UDMH和O2在Cu2O(111)表面的吸附及反应机理:第一性原理与反应分子动力学相结合的研究

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL
Hao-yang Wang, Ying Jia, Xiao-meng Lv, Wan-ting Zhou
{"title":"UDMH和O2在Cu2O(111)表面的吸附及反应机理:第一性原理与反应分子动力学相结合的研究","authors":"Hao-yang Wang,&nbsp;Ying Jia,&nbsp;Xiao-meng Lv,&nbsp;Wan-ting Zhou","doi":"10.1016/j.chemphys.2025.112750","DOIUrl":null,"url":null,"abstract":"<div><div>Unsymmetrical dimethylhydrazine (UDMH), a widely used liquid propellant, has garnered significant attention for its environmental monitoring challenges. This study explores the adsorption properties and reaction mechanisms of UDMH and oxygen on the Cu<sub>2</sub>O (111) surface through first-principles calculations and molecular dynamics simulations. Initially, adsorption energies and charge transfer dynamics were analyzed at various adsorption sites, revealing strong adsorption capacities for both UDMH and oxygen. Subsequently, molecular dynamics simulations elucidated the reaction pathways between UDMH and oxygen on the Cu<sub>2</sub>O (111) surface. The results indicate that UDMH undergoes rapid redox reactions with oxygen, forming multiple stable compounds. This highlights the substantial impact of oxygen on the accuracy of UDMH concentration detection by Cu<sub>2</sub>O-based sensors. These findings provide valuable insights for improving the design and functionality of gas-sensitive materials for UDMH detection.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"596 ","pages":"Article 112750"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption and reaction mechanism of UDMH and O2 on Cu2O (111) surface: A combined first-principles and reactive molecular dynamics study\",\"authors\":\"Hao-yang Wang,&nbsp;Ying Jia,&nbsp;Xiao-meng Lv,&nbsp;Wan-ting Zhou\",\"doi\":\"10.1016/j.chemphys.2025.112750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unsymmetrical dimethylhydrazine (UDMH), a widely used liquid propellant, has garnered significant attention for its environmental monitoring challenges. This study explores the adsorption properties and reaction mechanisms of UDMH and oxygen on the Cu<sub>2</sub>O (111) surface through first-principles calculations and molecular dynamics simulations. Initially, adsorption energies and charge transfer dynamics were analyzed at various adsorption sites, revealing strong adsorption capacities for both UDMH and oxygen. Subsequently, molecular dynamics simulations elucidated the reaction pathways between UDMH and oxygen on the Cu<sub>2</sub>O (111) surface. The results indicate that UDMH undergoes rapid redox reactions with oxygen, forming multiple stable compounds. This highlights the substantial impact of oxygen on the accuracy of UDMH concentration detection by Cu<sub>2</sub>O-based sensors. These findings provide valuable insights for improving the design and functionality of gas-sensitive materials for UDMH detection.</div></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"596 \",\"pages\":\"Article 112750\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030101042500151X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030101042500151X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

不对称二甲肼(UDMH)是一种广泛使用的液体推进剂,其环境监测方面的挑战引起了人们的广泛关注。本研究通过第一性原理计算和分子动力学模拟,探讨了UDMH和氧在Cu2O(111)表面的吸附特性和反应机理。首先,对不同吸附位点的吸附能和电荷转移动力学进行了分析,揭示了对UDMH和氧的强吸附能力。随后,分子动力学模拟阐明了UDMH与氧在Cu2O(111)表面的反应途径。结果表明,UDMH与氧发生快速氧化还原反应,形成多种稳定的化合物。这凸显了氧对cu20基传感器检测UDMH浓度准确性的实质性影响。这些发现为改进UDMH气敏材料的设计和功能提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adsorption and reaction mechanism of UDMH and O2 on Cu2O (111) surface: A combined first-principles and reactive molecular dynamics study
Unsymmetrical dimethylhydrazine (UDMH), a widely used liquid propellant, has garnered significant attention for its environmental monitoring challenges. This study explores the adsorption properties and reaction mechanisms of UDMH and oxygen on the Cu2O (111) surface through first-principles calculations and molecular dynamics simulations. Initially, adsorption energies and charge transfer dynamics were analyzed at various adsorption sites, revealing strong adsorption capacities for both UDMH and oxygen. Subsequently, molecular dynamics simulations elucidated the reaction pathways between UDMH and oxygen on the Cu2O (111) surface. The results indicate that UDMH undergoes rapid redox reactions with oxygen, forming multiple stable compounds. This highlights the substantial impact of oxygen on the accuracy of UDMH concentration detection by Cu2O-based sensors. These findings provide valuable insights for improving the design and functionality of gas-sensitive materials for UDMH detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信