{"title":"针对微塑料和纳米塑料以及其他环境毒物的片上器官技术比较综述","authors":"Safiyah Abdessalam , Trinity J. Hardy , Darya Pershina , Jeong-Yeol Yoon","doi":"10.1016/j.bios.2025.117472","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, organ-on-a-chip (OOC) technology has emerged as a groundbreaking platform to simulate complex physiological processes. Concurrently, the global presence of micro and nano-plastics (MNPs) in the environment and their ingestion has raised concerns about their impact on human health, specifically organs such as the lungs, liver, kidneys, and blood vessels. There is an added concern about their ability to cross even the blood-brain barrier (BBB). While numerous papers have been published assessing various environmental toxicants with OOCs, those for MNPs are relatively small. To ascertain current trends in methodologies and catalog the types of toxicants explored, we have gathered and analyzed papers that used OOCs to assess various environmental toxicants' impacts on these organs. Various platforms assessing MNPs were analyzed and compared to those for other environmental toxicants. Our results show that few articles have been published that used OOCs to assess MNPs' toxicity to human organs. Specifically, certain organs, such as the heart and skin, have little representation in this collection. OOC-based evaluation methods for MNP's toxicity have many advantages over the current methods – <em>in vitro</em> tests with 2D human cell cultures and animal studies – including lower cost, faster results, and greater physiological relevance. This review summarizes the current OOC techniques for assessing environmental toxicants and laboratory methods for evaluating MNPs' toxicity to humans. A systematic comparison of these methods provides a deeper understanding of the current techniques and suggests the optimized use of OOCs for assessing MNPs' and other pollutants' toxicity.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"282 ","pages":"Article 117472"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative review of organ-on-a-chip technologies for micro- and nanoplastics versus other environmental toxicants\",\"authors\":\"Safiyah Abdessalam , Trinity J. Hardy , Darya Pershina , Jeong-Yeol Yoon\",\"doi\":\"10.1016/j.bios.2025.117472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, organ-on-a-chip (OOC) technology has emerged as a groundbreaking platform to simulate complex physiological processes. Concurrently, the global presence of micro and nano-plastics (MNPs) in the environment and their ingestion has raised concerns about their impact on human health, specifically organs such as the lungs, liver, kidneys, and blood vessels. There is an added concern about their ability to cross even the blood-brain barrier (BBB). While numerous papers have been published assessing various environmental toxicants with OOCs, those for MNPs are relatively small. To ascertain current trends in methodologies and catalog the types of toxicants explored, we have gathered and analyzed papers that used OOCs to assess various environmental toxicants' impacts on these organs. Various platforms assessing MNPs were analyzed and compared to those for other environmental toxicants. Our results show that few articles have been published that used OOCs to assess MNPs' toxicity to human organs. Specifically, certain organs, such as the heart and skin, have little representation in this collection. OOC-based evaluation methods for MNP's toxicity have many advantages over the current methods – <em>in vitro</em> tests with 2D human cell cultures and animal studies – including lower cost, faster results, and greater physiological relevance. This review summarizes the current OOC techniques for assessing environmental toxicants and laboratory methods for evaluating MNPs' toxicity to humans. A systematic comparison of these methods provides a deeper understanding of the current techniques and suggests the optimized use of OOCs for assessing MNPs' and other pollutants' toxicity.</div></div>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":\"282 \",\"pages\":\"Article 117472\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095656632500346X\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095656632500346X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
A comparative review of organ-on-a-chip technologies for micro- and nanoplastics versus other environmental toxicants
In recent years, organ-on-a-chip (OOC) technology has emerged as a groundbreaking platform to simulate complex physiological processes. Concurrently, the global presence of micro and nano-plastics (MNPs) in the environment and their ingestion has raised concerns about their impact on human health, specifically organs such as the lungs, liver, kidneys, and blood vessels. There is an added concern about their ability to cross even the blood-brain barrier (BBB). While numerous papers have been published assessing various environmental toxicants with OOCs, those for MNPs are relatively small. To ascertain current trends in methodologies and catalog the types of toxicants explored, we have gathered and analyzed papers that used OOCs to assess various environmental toxicants' impacts on these organs. Various platforms assessing MNPs were analyzed and compared to those for other environmental toxicants. Our results show that few articles have been published that used OOCs to assess MNPs' toxicity to human organs. Specifically, certain organs, such as the heart and skin, have little representation in this collection. OOC-based evaluation methods for MNP's toxicity have many advantages over the current methods – in vitro tests with 2D human cell cultures and animal studies – including lower cost, faster results, and greater physiological relevance. This review summarizes the current OOC techniques for assessing environmental toxicants and laboratory methods for evaluating MNPs' toxicity to humans. A systematic comparison of these methods provides a deeper understanding of the current techniques and suggests the optimized use of OOCs for assessing MNPs' and other pollutants' toxicity.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.