基于人工神经网络的微电网距离保护灵敏度增强

IF 4.2 Q2 ENERGY & FUELS
Ahmed N. Sheta , Abdelfattah A. Eladl , Bishoy E. Sedhom , Magda I. El-Afifi , Padmanaban Sanjeevikumar , Mohamed Zaki
{"title":"基于人工神经网络的微电网距离保护灵敏度增强","authors":"Ahmed N. Sheta ,&nbsp;Abdelfattah A. Eladl ,&nbsp;Bishoy E. Sedhom ,&nbsp;Magda I. El-Afifi ,&nbsp;Padmanaban Sanjeevikumar ,&nbsp;Mohamed Zaki","doi":"10.1016/j.ref.2025.100710","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of distributed energy resources (DERs) into microgrids introduces dynamic operational challenges that conventional distance relays struggle to address, particularly under variable network topologies, load fluctuations, and DER intermittency. This paper proposes an artificial neural network (ANN)-enhanced distance protection scheme to improve fault detection accuracy, classification, and localization in DER-rich microgrids. A 20-layer ANN model, trained on 50 fault scenarios encompassing 11 fault types (including phase-to-phase, phase-to-ground, and high-impedance faults up to 50 Ω) and non-fault conditions, processes raw three-phase and ground impedance measurements directly. The ANN achieves a mean squared error (MSE) of 0.0143 at epoch 21, with binary outputs enabling rapid fault identification (within two power cycles) and classification. Validated under grid-connected and islanded modes with DER penetration levels of 20–80 %, the scheme demonstrates 98.7 % accuracy, 97 % noise resilience at 20 dB SNR, and precise localization of faults. Comparative analysis against traditional relays and AI-based methods (CNNs, DTs, and SVMs) reveals superior fault coverage, adaptability to DER variability, and elimination of preprocessing delays. By mitigating false tripping and DER-induced impedance errors, this ANN-based approach significantly enhances microgrid reliability, offering a robust solution for evolving power systems.</div></div>","PeriodicalId":29780,"journal":{"name":"Renewable Energy Focus","volume":"54 ","pages":"Article 100710"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial neural network-based enhanced distance protection sensitivity in microgrids\",\"authors\":\"Ahmed N. Sheta ,&nbsp;Abdelfattah A. Eladl ,&nbsp;Bishoy E. Sedhom ,&nbsp;Magda I. El-Afifi ,&nbsp;Padmanaban Sanjeevikumar ,&nbsp;Mohamed Zaki\",\"doi\":\"10.1016/j.ref.2025.100710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integration of distributed energy resources (DERs) into microgrids introduces dynamic operational challenges that conventional distance relays struggle to address, particularly under variable network topologies, load fluctuations, and DER intermittency. This paper proposes an artificial neural network (ANN)-enhanced distance protection scheme to improve fault detection accuracy, classification, and localization in DER-rich microgrids. A 20-layer ANN model, trained on 50 fault scenarios encompassing 11 fault types (including phase-to-phase, phase-to-ground, and high-impedance faults up to 50 Ω) and non-fault conditions, processes raw three-phase and ground impedance measurements directly. The ANN achieves a mean squared error (MSE) of 0.0143 at epoch 21, with binary outputs enabling rapid fault identification (within two power cycles) and classification. Validated under grid-connected and islanded modes with DER penetration levels of 20–80 %, the scheme demonstrates 98.7 % accuracy, 97 % noise resilience at 20 dB SNR, and precise localization of faults. Comparative analysis against traditional relays and AI-based methods (CNNs, DTs, and SVMs) reveals superior fault coverage, adaptability to DER variability, and elimination of preprocessing delays. By mitigating false tripping and DER-induced impedance errors, this ANN-based approach significantly enhances microgrid reliability, offering a robust solution for evolving power systems.</div></div>\",\"PeriodicalId\":29780,\"journal\":{\"name\":\"Renewable Energy Focus\",\"volume\":\"54 \",\"pages\":\"Article 100710\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy Focus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755008425000328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy Focus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755008425000328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

将分布式能源(DERs)集成到微电网中带来了传统距离继电器难以解决的动态运行挑战,特别是在可变网络拓扑、负载波动和DER间歇性的情况下。本文提出了一种人工神经网络增强距离保护方案,以提高富der微电网的故障检测精度、分类和定位能力。一个20层的人工神经网络模型,训练了50种故障场景,包括11种故障类型(包括相对相,相对地和高达50的高阻抗故障Ω)和非故障条件,直接处理原始三相和地阻抗测量。该人工神经网络在epoch 21的均方误差(MSE)为0.0143,其二进制输出能够快速识别故障(在两个电源周期内)和分类。在并网模式和孤岛模式下,对该方法进行了验证,在20 dB信噪比下,准确率为98.7%,噪声恢复率为97%,故障定位准确。通过与传统中继和基于人工智能的方法(cnn、dt和svm)的对比分析,发现该方法具有更好的故障覆盖率、对DER变异性的适应性和消除预处理延迟的能力。通过减少误跳闸和der引起的阻抗误差,这种基于人工神经网络的方法显著提高了微电网的可靠性,为不断发展的电力系统提供了强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neural network-based enhanced distance protection sensitivity in microgrids
The integration of distributed energy resources (DERs) into microgrids introduces dynamic operational challenges that conventional distance relays struggle to address, particularly under variable network topologies, load fluctuations, and DER intermittency. This paper proposes an artificial neural network (ANN)-enhanced distance protection scheme to improve fault detection accuracy, classification, and localization in DER-rich microgrids. A 20-layer ANN model, trained on 50 fault scenarios encompassing 11 fault types (including phase-to-phase, phase-to-ground, and high-impedance faults up to 50 Ω) and non-fault conditions, processes raw three-phase and ground impedance measurements directly. The ANN achieves a mean squared error (MSE) of 0.0143 at epoch 21, with binary outputs enabling rapid fault identification (within two power cycles) and classification. Validated under grid-connected and islanded modes with DER penetration levels of 20–80 %, the scheme demonstrates 98.7 % accuracy, 97 % noise resilience at 20 dB SNR, and precise localization of faults. Comparative analysis against traditional relays and AI-based methods (CNNs, DTs, and SVMs) reveals superior fault coverage, adaptability to DER variability, and elimination of preprocessing delays. By mitigating false tripping and DER-induced impedance errors, this ANN-based approach significantly enhances microgrid reliability, offering a robust solution for evolving power systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable Energy Focus
Renewable Energy Focus Renewable Energy, Sustainability and the Environment
CiteScore
7.10
自引率
8.30%
发文量
0
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信