石墨烯增强非晶合金力学特性和变形行为的原子尺度研究

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Dinh-Quan Doan , Anh-Tung Luu , Quang-Hai Tran , Huu-Nghia Nguyen , Thi-Bao-Tien Tran , Xuan-Tien Tran
{"title":"石墨烯增强非晶合金力学特性和变形行为的原子尺度研究","authors":"Dinh-Quan Doan ,&nbsp;Anh-Tung Luu ,&nbsp;Quang-Hai Tran ,&nbsp;Huu-Nghia Nguyen ,&nbsp;Thi-Bao-Tien Tran ,&nbsp;Xuan-Tien Tran","doi":"10.1016/j.physb.2025.417264","DOIUrl":null,"url":null,"abstract":"<div><div>Molecular dynamics simulations are used to investigate the effects of graphene incorporation, graphene orientation, and temperature on the mechanical properties of amorphous CuTa/Graphene nanolaminates (AGNLs) during tensile process. The results show that the inclusion of graphene in the CuTa matrix significantly enhances the mechanical properties of AGNLs compared to the monolithic CuTa. The amorphous-graphene interface plays a crucial role in initiating shear transformation zones within the amorphous matrix. Graphene influences atomic displacement, promotes sliding at interfaces, and alters the plastic deformation behavior. The study finds that reducing the interlayer thickness of AGNLs increases the mechanical properties due to higher graphene density. The mechanical properties of AGNLs also indicate that the tensile strength in the zigzag direction is higher than in the armchair direction. Temperature has a significant impact, with higher temperatures causing a decline in tensile strength and Young's modulus due to thermal softening and increased atomic vibrations.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"710 ","pages":"Article 417264"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic-scale investigation of the mechanical characteristics and deformation behaviors of graphene-reinforced amorphous alloy\",\"authors\":\"Dinh-Quan Doan ,&nbsp;Anh-Tung Luu ,&nbsp;Quang-Hai Tran ,&nbsp;Huu-Nghia Nguyen ,&nbsp;Thi-Bao-Tien Tran ,&nbsp;Xuan-Tien Tran\",\"doi\":\"10.1016/j.physb.2025.417264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Molecular dynamics simulations are used to investigate the effects of graphene incorporation, graphene orientation, and temperature on the mechanical properties of amorphous CuTa/Graphene nanolaminates (AGNLs) during tensile process. The results show that the inclusion of graphene in the CuTa matrix significantly enhances the mechanical properties of AGNLs compared to the monolithic CuTa. The amorphous-graphene interface plays a crucial role in initiating shear transformation zones within the amorphous matrix. Graphene influences atomic displacement, promotes sliding at interfaces, and alters the plastic deformation behavior. The study finds that reducing the interlayer thickness of AGNLs increases the mechanical properties due to higher graphene density. The mechanical properties of AGNLs also indicate that the tensile strength in the zigzag direction is higher than in the armchair direction. Temperature has a significant impact, with higher temperatures causing a decline in tensile strength and Young's modulus due to thermal softening and increased atomic vibrations.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"710 \",\"pages\":\"Article 417264\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625003813\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625003813","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

采用分子动力学模拟研究了石墨烯掺入、石墨烯取向和温度对非晶CuTa/石墨烯纳米层合材料(AGNLs)拉伸过程中力学性能的影响。结果表明,与单片CuTa相比,石墨烯在CuTa基体中的加入显著提高了AGNLs的力学性能。非晶-石墨烯界面在非晶基体剪切转变区形成过程中起着至关重要的作用。石墨烯影响原子位移,促进界面滑动,并改变塑性变形行为。研究发现,由于石墨烯密度的提高,减少AGNLs的层间厚度可以提高机械性能。AGNLs的力学性能也表明,锯齿方向的拉伸强度高于扶手椅方向的拉伸强度。温度有显著的影响,高温会导致拉伸强度和杨氏模量的下降,这是由于热软化和原子振动的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atomic-scale investigation of the mechanical characteristics and deformation behaviors of graphene-reinforced amorphous alloy
Molecular dynamics simulations are used to investigate the effects of graphene incorporation, graphene orientation, and temperature on the mechanical properties of amorphous CuTa/Graphene nanolaminates (AGNLs) during tensile process. The results show that the inclusion of graphene in the CuTa matrix significantly enhances the mechanical properties of AGNLs compared to the monolithic CuTa. The amorphous-graphene interface plays a crucial role in initiating shear transformation zones within the amorphous matrix. Graphene influences atomic displacement, promotes sliding at interfaces, and alters the plastic deformation behavior. The study finds that reducing the interlayer thickness of AGNLs increases the mechanical properties due to higher graphene density. The mechanical properties of AGNLs also indicate that the tensile strength in the zigzag direction is higher than in the armchair direction. Temperature has a significant impact, with higher temperatures causing a decline in tensile strength and Young's modulus due to thermal softening and increased atomic vibrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信