{"title":"一个由顶点支配的图的隔离猜想的证明","authors":"Peter Borg","doi":"10.1016/j.dam.2025.04.009","DOIUrl":null,"url":null,"abstract":"<div><div>A copy of a graph <span><math><mi>F</mi></math></span> is called an <span><math><mi>F</mi></math></span>-copy. For any graph <span><math><mi>G</mi></math></span>, the <span><math><mi>F</mi></math></span>-isolation number of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>ι</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>, is the size of a smallest subset <span><math><mi>D</mi></math></span> of the vertex set of <span><math><mi>G</mi></math></span> such that the closed neighbourhood <span><math><mrow><mi>N</mi><mrow><mo>[</mo><mi>D</mi><mo>]</mo></mrow></mrow></math></span> of <span><math><mi>D</mi></math></span> in <span><math><mi>G</mi></math></span> intersects the vertex sets of the <span><math><mi>F</mi></math></span>-copies contained by <span><math><mi>G</mi></math></span> (equivalently, <span><math><mrow><mi>G</mi><mo>−</mo><mi>N</mi><mrow><mo>[</mo><mi>D</mi><mo>]</mo></mrow></mrow></math></span> contains no <span><math><mi>F</mi></math></span>-copy). Thus, <span><math><mrow><mi>ι</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> is the domination number <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span>, and <span><math><mrow><mi>ι</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> is the vertex-edge domination number of <span><math><mi>G</mi></math></span>. We prove that if <span><math><mi>F</mi></math></span> is a <span><math><mi>k</mi></math></span>-edge graph, <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> (that is, <span><math><mi>F</mi></math></span> has a vertex that is adjacent to all the other vertices of <span><math><mi>F</mi></math></span>), and <span><math><mi>G</mi></math></span> is a connected <span><math><mi>m</mi></math></span>-edge graph, then <span><math><mrow><mi>ι</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌊</mo><mrow><mfrac><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>k</mi><mo>+</mo><mn>2</mn></mrow></mfrac></mrow><mo>⌋</mo></mrow></mrow></math></span> unless <span><math><mi>G</mi></math></span> is an <span><math><mi>F</mi></math></span>-copy or <span><math><mi>F</mi></math></span> is a 3-path and <span><math><mi>G</mi></math></span> is a 6-cycle. This was recently posed as a conjecture by Zhang and Wu, who settled the extreme case where <span><math><mi>F</mi></math></span> is a star. The result for the other extreme case where <span><math><mi>F</mi></math></span> is a clique had been obtained by Fenech, Kaemawichanurat and the present author. The bound is attainable for any <span><math><mrow><mi>m</mi><mo>≥</mo><mn>0</mn></mrow></math></span> unless <span><math><mrow><mn>1</mn><mo>≤</mo><mi>m</mi><mo>=</mo><mi>k</mi><mo>≤</mo><mn>2</mn></mrow></math></span>. New ideas, including deletion methods and divisibility considerations, are introduced in the proof of the conjecture.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 247-253"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of a conjecture on isolation of graphs dominated by a vertex\",\"authors\":\"Peter Borg\",\"doi\":\"10.1016/j.dam.2025.04.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A copy of a graph <span><math><mi>F</mi></math></span> is called an <span><math><mi>F</mi></math></span>-copy. For any graph <span><math><mi>G</mi></math></span>, the <span><math><mi>F</mi></math></span>-isolation number of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>ι</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>, is the size of a smallest subset <span><math><mi>D</mi></math></span> of the vertex set of <span><math><mi>G</mi></math></span> such that the closed neighbourhood <span><math><mrow><mi>N</mi><mrow><mo>[</mo><mi>D</mi><mo>]</mo></mrow></mrow></math></span> of <span><math><mi>D</mi></math></span> in <span><math><mi>G</mi></math></span> intersects the vertex sets of the <span><math><mi>F</mi></math></span>-copies contained by <span><math><mi>G</mi></math></span> (equivalently, <span><math><mrow><mi>G</mi><mo>−</mo><mi>N</mi><mrow><mo>[</mo><mi>D</mi><mo>]</mo></mrow></mrow></math></span> contains no <span><math><mi>F</mi></math></span>-copy). Thus, <span><math><mrow><mi>ι</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> is the domination number <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span>, and <span><math><mrow><mi>ι</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> is the vertex-edge domination number of <span><math><mi>G</mi></math></span>. We prove that if <span><math><mi>F</mi></math></span> is a <span><math><mi>k</mi></math></span>-edge graph, <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> (that is, <span><math><mi>F</mi></math></span> has a vertex that is adjacent to all the other vertices of <span><math><mi>F</mi></math></span>), and <span><math><mi>G</mi></math></span> is a connected <span><math><mi>m</mi></math></span>-edge graph, then <span><math><mrow><mi>ι</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌊</mo><mrow><mfrac><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>k</mi><mo>+</mo><mn>2</mn></mrow></mfrac></mrow><mo>⌋</mo></mrow></mrow></math></span> unless <span><math><mi>G</mi></math></span> is an <span><math><mi>F</mi></math></span>-copy or <span><math><mi>F</mi></math></span> is a 3-path and <span><math><mi>G</mi></math></span> is a 6-cycle. This was recently posed as a conjecture by Zhang and Wu, who settled the extreme case where <span><math><mi>F</mi></math></span> is a star. The result for the other extreme case where <span><math><mi>F</mi></math></span> is a clique had been obtained by Fenech, Kaemawichanurat and the present author. The bound is attainable for any <span><math><mrow><mi>m</mi><mo>≥</mo><mn>0</mn></mrow></math></span> unless <span><math><mrow><mn>1</mn><mo>≤</mo><mi>m</mi><mo>=</mo><mi>k</mi><mo>≤</mo><mn>2</mn></mrow></math></span>. New ideas, including deletion methods and divisibility considerations, are introduced in the proof of the conjecture.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"371 \",\"pages\":\"Pages 247-253\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25001775\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001775","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Proof of a conjecture on isolation of graphs dominated by a vertex
A copy of a graph is called an -copy. For any graph , the -isolation number of , denoted by , is the size of a smallest subset of the vertex set of such that the closed neighbourhood of in intersects the vertex sets of the -copies contained by (equivalently, contains no -copy). Thus, is the domination number of , and is the vertex-edge domination number of . We prove that if is a -edge graph, (that is, has a vertex that is adjacent to all the other vertices of ), and is a connected -edge graph, then unless is an -copy or is a 3-path and is a 6-cycle. This was recently posed as a conjecture by Zhang and Wu, who settled the extreme case where is a star. The result for the other extreme case where is a clique had been obtained by Fenech, Kaemawichanurat and the present author. The bound is attainable for any unless . New ideas, including deletion methods and divisibility considerations, are introduced in the proof of the conjecture.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.