实线上带彩色噪声的随机Landau-Lifshitz-Bloch方程的随机动力学

IF 2.4 2区 数学 Q1 MATHEMATICS
Daiwen Huang , Zhaoyang Qiu
{"title":"实线上带彩色噪声的随机Landau-Lifshitz-Bloch方程的随机动力学","authors":"Daiwen Huang ,&nbsp;Zhaoyang Qiu","doi":"10.1016/j.jde.2025.113314","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we are concerned the stochastic Landau-Lifshitz-Bloch equation driven by the colored noise, evolving in the entire real line. First, the well-posedness of strong solution is established using a domain expansion method. Then, we consider the existence and uniqueness of the pullback random attractors in regularity space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. Finally, we prove the upper semi-continuity of the attractors as the noise coefficient <em>α</em> tending to zero. The uniform tail-ends estimates of solutions for overcoming the non-compactness difficulty of Sobolev embedding in unbounded domains and the energy method due to Ball are invoked to establish the asymptotic compactness of solutions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"435 ","pages":"Article 113314"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random dynamics of the stochastic Landau-Lifshitz-Bloch equation with colored noise in the real line\",\"authors\":\"Daiwen Huang ,&nbsp;Zhaoyang Qiu\",\"doi\":\"10.1016/j.jde.2025.113314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we are concerned the stochastic Landau-Lifshitz-Bloch equation driven by the colored noise, evolving in the entire real line. First, the well-posedness of strong solution is established using a domain expansion method. Then, we consider the existence and uniqueness of the pullback random attractors in regularity space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. Finally, we prove the upper semi-continuity of the attractors as the noise coefficient <em>α</em> tending to zero. The uniform tail-ends estimates of solutions for overcoming the non-compactness difficulty of Sobolev embedding in unbounded domains and the energy method due to Ball are invoked to establish the asymptotic compactness of solutions.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"435 \",\"pages\":\"Article 113314\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625003419\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003419","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在有色噪声驱动下的随机Landau-Lifshitz-Bloch方程在整条实线上的演化。首先,利用域展开法建立了强解的适定性。然后,我们考虑了回拉随机吸引子在正则空间H1(R)中的存在唯一性。最后,当噪声系数α趋于零时,证明了吸引子的上半连续性。为了克服Sobolev嵌入在无界域中的非紧性困难,利用解的一致尾端估计和Ball的能量法建立了解的渐近紧性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random dynamics of the stochastic Landau-Lifshitz-Bloch equation with colored noise in the real line
In this paper, we are concerned the stochastic Landau-Lifshitz-Bloch equation driven by the colored noise, evolving in the entire real line. First, the well-posedness of strong solution is established using a domain expansion method. Then, we consider the existence and uniqueness of the pullback random attractors in regularity space H1(R). Finally, we prove the upper semi-continuity of the attractors as the noise coefficient α tending to zero. The uniform tail-ends estimates of solutions for overcoming the non-compactness difficulty of Sobolev embedding in unbounded domains and the energy method due to Ball are invoked to establish the asymptotic compactness of solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信