基于水平集方法的两个最小p-拉普拉斯特征值拓扑优化

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Jing Li , Meizhi Qian , Shengfeng Zhu
{"title":"基于水平集方法的两个最小p-拉普拉斯特征值拓扑优化","authors":"Jing Li ,&nbsp;Meizhi Qian ,&nbsp;Shengfeng Zhu","doi":"10.1016/j.cnsns.2025.108854","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers optimization of the two smallest Dirichlet <span><math><mi>p</mi></math></span>-Laplacian eigenvalues subject to geometric volume or perimeter constraint. A relaxed topology optimization model with shape sensitivity analysis is presented. A level set method and finite element discretization are employed to numerically solving the model problems. The <span><math><mi>p</mi></math></span>-Laplacian eigenvalue is efficiently solved using quasi-Newton method, which achieves accurate results even for extreme values of <span><math><mi>p</mi></math></span>. Numerical results are provided to indicate that for the first eigenvalue, the optimal shapes are disks in 2D and balls in 3D under both constraints, independent of <span><math><mi>p</mi></math></span>. For the second eigenvalue, optimizers have two identical disks or balls independent of <span><math><mi>p</mi></math></span> under volume constraint, while optimized shapes evolve from ellipsoidal to flatter configurations under perimeter constraint as <span><math><mi>p</mi></math></span> increases.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"147 ","pages":"Article 108854"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology optimization of the two smallest p-Laplacian eigenvalues by a level set method\",\"authors\":\"Jing Li ,&nbsp;Meizhi Qian ,&nbsp;Shengfeng Zhu\",\"doi\":\"10.1016/j.cnsns.2025.108854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper considers optimization of the two smallest Dirichlet <span><math><mi>p</mi></math></span>-Laplacian eigenvalues subject to geometric volume or perimeter constraint. A relaxed topology optimization model with shape sensitivity analysis is presented. A level set method and finite element discretization are employed to numerically solving the model problems. The <span><math><mi>p</mi></math></span>-Laplacian eigenvalue is efficiently solved using quasi-Newton method, which achieves accurate results even for extreme values of <span><math><mi>p</mi></math></span>. Numerical results are provided to indicate that for the first eigenvalue, the optimal shapes are disks in 2D and balls in 3D under both constraints, independent of <span><math><mi>p</mi></math></span>. For the second eigenvalue, optimizers have two identical disks or balls independent of <span><math><mi>p</mi></math></span> under volume constraint, while optimized shapes evolve from ellipsoidal to flatter configurations under perimeter constraint as <span><math><mi>p</mi></math></span> increases.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"147 \",\"pages\":\"Article 108854\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570425002655\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425002655","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究几何体积或周长约束下两个最小Dirichlet p- laplace特征值的优化问题。提出了一种带有形状灵敏度分析的松弛拓扑优化模型。采用水平集法和有限元离散法对模型问题进行了数值求解。利用拟牛顿方法有效地求解了p-拉普拉斯特征值,即使对于p的极值也能得到准确的结果。数值结果表明,对于第一个特征值,在两种约束下的最优形状是二维的圆盘和三维的球,与p无关。对于第二个特征值,在体积约束下,优化器有两个相同的圆盘或球,与p无关。随着p值的增加,优化后的形状在周长约束下由椭球形向平面形演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topology optimization of the two smallest p-Laplacian eigenvalues by a level set method
This paper considers optimization of the two smallest Dirichlet p-Laplacian eigenvalues subject to geometric volume or perimeter constraint. A relaxed topology optimization model with shape sensitivity analysis is presented. A level set method and finite element discretization are employed to numerically solving the model problems. The p-Laplacian eigenvalue is efficiently solved using quasi-Newton method, which achieves accurate results even for extreme values of p. Numerical results are provided to indicate that for the first eigenvalue, the optimal shapes are disks in 2D and balls in 3D under both constraints, independent of p. For the second eigenvalue, optimizers have two identical disks or balls independent of p under volume constraint, while optimized shapes evolve from ellipsoidal to flatter configurations under perimeter constraint as p increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信