{"title":"利用预测嵌入模型加强眼科麻醉优化","authors":"Mingdi Zhang , Wanqiu Jiao , Kehui Tong , Ping Zhang","doi":"10.1016/j.slast.2025.100290","DOIUrl":null,"url":null,"abstract":"<div><div>Ophthalmic anesthesia the crucial factors in success and safety of ophthalmic surgery, which involves the delicate aspects of pain control, sedation, and patient response. Advances in ophthalmic surgery cause a need for exact and individualized anesthetic procedures to maximize patient satisfaction and outcomes. This research investigates the machine learning (ML) and natural language processing (NLP) to personalize the practice of ophthalmic anesthesia. Text data includes preoperative assessments; drug history, procedure information, and discharge summary are preprocessed using the NLP approach, stop word removal, and lemmatization. Word2Vec technique is applied for feature extraction to represent clinical terms with vectors which carry semantic meaning, helping the model comprehend the text better. This research proposes a ML algorithm of Efficient Osprey Optimized Resilient Random Forest (EOO-RRF) model to forecast ideal anesthesia plans and patient results. Experimental results show that the EOO-RRF model is superior to traditional methods and achieves metrics such as MSE = 28.424, RMSE = 4.321, AUC=98.32% and R<sup>2</sup> = 0.956. The results indicate that combining NLP and ML in ophthalmic anesthesia leads to safer, more efficient, and personalized anesthetic management.</div></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"32 ","pages":"Article 100290"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Ophthalmic Anesthesia Optimization with Predictive Embedding Models\",\"authors\":\"Mingdi Zhang , Wanqiu Jiao , Kehui Tong , Ping Zhang\",\"doi\":\"10.1016/j.slast.2025.100290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ophthalmic anesthesia the crucial factors in success and safety of ophthalmic surgery, which involves the delicate aspects of pain control, sedation, and patient response. Advances in ophthalmic surgery cause a need for exact and individualized anesthetic procedures to maximize patient satisfaction and outcomes. This research investigates the machine learning (ML) and natural language processing (NLP) to personalize the practice of ophthalmic anesthesia. Text data includes preoperative assessments; drug history, procedure information, and discharge summary are preprocessed using the NLP approach, stop word removal, and lemmatization. Word2Vec technique is applied for feature extraction to represent clinical terms with vectors which carry semantic meaning, helping the model comprehend the text better. This research proposes a ML algorithm of Efficient Osprey Optimized Resilient Random Forest (EOO-RRF) model to forecast ideal anesthesia plans and patient results. Experimental results show that the EOO-RRF model is superior to traditional methods and achieves metrics such as MSE = 28.424, RMSE = 4.321, AUC=98.32% and R<sup>2</sup> = 0.956. The results indicate that combining NLP and ML in ophthalmic anesthesia leads to safer, more efficient, and personalized anesthetic management.</div></div>\",\"PeriodicalId\":54248,\"journal\":{\"name\":\"SLAS Technology\",\"volume\":\"32 \",\"pages\":\"Article 100290\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472630325000482\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630325000482","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Enhancing Ophthalmic Anesthesia Optimization with Predictive Embedding Models
Ophthalmic anesthesia the crucial factors in success and safety of ophthalmic surgery, which involves the delicate aspects of pain control, sedation, and patient response. Advances in ophthalmic surgery cause a need for exact and individualized anesthetic procedures to maximize patient satisfaction and outcomes. This research investigates the machine learning (ML) and natural language processing (NLP) to personalize the practice of ophthalmic anesthesia. Text data includes preoperative assessments; drug history, procedure information, and discharge summary are preprocessed using the NLP approach, stop word removal, and lemmatization. Word2Vec technique is applied for feature extraction to represent clinical terms with vectors which carry semantic meaning, helping the model comprehend the text better. This research proposes a ML algorithm of Efficient Osprey Optimized Resilient Random Forest (EOO-RRF) model to forecast ideal anesthesia plans and patient results. Experimental results show that the EOO-RRF model is superior to traditional methods and achieves metrics such as MSE = 28.424, RMSE = 4.321, AUC=98.32% and R2 = 0.956. The results indicate that combining NLP and ML in ophthalmic anesthesia leads to safer, more efficient, and personalized anesthetic management.
期刊介绍:
SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.