Xin Tang , Junji Tao , Yuanyuan Liu , Deao Gong , Xuefeng Shan , Kai Wang , Ni Tang
{"title":"SLC27A5在肝细胞癌中通过诱导METTL14的选择性多腺苷化抑制肿瘤干细胞","authors":"Xin Tang , Junji Tao , Yuanyuan Liu , Deao Gong , Xuefeng Shan , Kai Wang , Ni Tang","doi":"10.1016/j.gendis.2024.101488","DOIUrl":null,"url":null,"abstract":"<div><div>Solute carrier family 27 member 5 (SLC27A5/FATP5) is a liver-specific metabolic enzyme that plays a crucial role in fatty acid transport and bile acid metabolism. Deficiency of SLC27A5 promotes the progression of hepatocellular carcinoma (HCC) and is strongly associated with a poor prognosis. SLC27A5 exhibits noncanonical functions beyond its metabolic role; however, its specific mechanisms in hepatocarcinogenesis remain elusive and are therefore investigated in this study. Immunoprecipitation-mass spectrometry analysis showed that SLC27A5-interacting proteins were significantly enriched in alternative polyadenylation (APA). RNA-sequencing data provided evidence that SLC27A5 plays a global role in regulating APA events in HCC. Mechanistically, SLC27A5 facilitates the usage of the proximal polyadenylation site of <em>METTL14</em> by downregulating the expression of the APA-associated factor PABPC1, resulting in the shortening of the <em>METTL14</em>-3′UTR and the conversion of <em>METTL14</em>-UL to <em>METTL14</em>-US. In contrast to <em>METTL14</em>-UL, <em>METTL14</em>-US escapes the inhibitory effect of miRNA targeting, leading to increased METTL14 expression. <em>METTL14</em>-US upregulation by SLC27A5 suppressed the stemness of HCC. Therefore, low levels of SLC27A5 and METTL14 may serve as reliable biomarkers for identifying poor prognosis in patients with HCC. In conclusion, SLC27A5/PABPC1 inhibits HCC stemness via APA-regulated expression of METTL14, providing potential avenues for the development of novel therapeutic strategies.</div></div>","PeriodicalId":12689,"journal":{"name":"Genes & Diseases","volume":"12 4","pages":"Article 101488"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SLC27A5 inhibits cancer stem cells by inducing alternative polyadenylation of METTL14 in hepatocellular carcinoma\",\"authors\":\"Xin Tang , Junji Tao , Yuanyuan Liu , Deao Gong , Xuefeng Shan , Kai Wang , Ni Tang\",\"doi\":\"10.1016/j.gendis.2024.101488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solute carrier family 27 member 5 (SLC27A5/FATP5) is a liver-specific metabolic enzyme that plays a crucial role in fatty acid transport and bile acid metabolism. Deficiency of SLC27A5 promotes the progression of hepatocellular carcinoma (HCC) and is strongly associated with a poor prognosis. SLC27A5 exhibits noncanonical functions beyond its metabolic role; however, its specific mechanisms in hepatocarcinogenesis remain elusive and are therefore investigated in this study. Immunoprecipitation-mass spectrometry analysis showed that SLC27A5-interacting proteins were significantly enriched in alternative polyadenylation (APA). RNA-sequencing data provided evidence that SLC27A5 plays a global role in regulating APA events in HCC. Mechanistically, SLC27A5 facilitates the usage of the proximal polyadenylation site of <em>METTL14</em> by downregulating the expression of the APA-associated factor PABPC1, resulting in the shortening of the <em>METTL14</em>-3′UTR and the conversion of <em>METTL14</em>-UL to <em>METTL14</em>-US. In contrast to <em>METTL14</em>-UL, <em>METTL14</em>-US escapes the inhibitory effect of miRNA targeting, leading to increased METTL14 expression. <em>METTL14</em>-US upregulation by SLC27A5 suppressed the stemness of HCC. Therefore, low levels of SLC27A5 and METTL14 may serve as reliable biomarkers for identifying poor prognosis in patients with HCC. In conclusion, SLC27A5/PABPC1 inhibits HCC stemness via APA-regulated expression of METTL14, providing potential avenues for the development of novel therapeutic strategies.</div></div>\",\"PeriodicalId\":12689,\"journal\":{\"name\":\"Genes & Diseases\",\"volume\":\"12 4\",\"pages\":\"Article 101488\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235230422400285X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & Diseases","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235230422400285X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
SLC27A5 inhibits cancer stem cells by inducing alternative polyadenylation of METTL14 in hepatocellular carcinoma
Solute carrier family 27 member 5 (SLC27A5/FATP5) is a liver-specific metabolic enzyme that plays a crucial role in fatty acid transport and bile acid metabolism. Deficiency of SLC27A5 promotes the progression of hepatocellular carcinoma (HCC) and is strongly associated with a poor prognosis. SLC27A5 exhibits noncanonical functions beyond its metabolic role; however, its specific mechanisms in hepatocarcinogenesis remain elusive and are therefore investigated in this study. Immunoprecipitation-mass spectrometry analysis showed that SLC27A5-interacting proteins were significantly enriched in alternative polyadenylation (APA). RNA-sequencing data provided evidence that SLC27A5 plays a global role in regulating APA events in HCC. Mechanistically, SLC27A5 facilitates the usage of the proximal polyadenylation site of METTL14 by downregulating the expression of the APA-associated factor PABPC1, resulting in the shortening of the METTL14-3′UTR and the conversion of METTL14-UL to METTL14-US. In contrast to METTL14-UL, METTL14-US escapes the inhibitory effect of miRNA targeting, leading to increased METTL14 expression. METTL14-US upregulation by SLC27A5 suppressed the stemness of HCC. Therefore, low levels of SLC27A5 and METTL14 may serve as reliable biomarkers for identifying poor prognosis in patients with HCC. In conclusion, SLC27A5/PABPC1 inhibits HCC stemness via APA-regulated expression of METTL14, providing potential avenues for the development of novel therapeutic strategies.
期刊介绍:
Genes & Diseases is an international journal for molecular and translational medicine. The journal primarily focuses on publishing investigations on the molecular bases and experimental therapeutics of human diseases. Publication formats include full length research article, review article, short communication, correspondence, perspectives, commentary, views on news, and research watch.
Aims and Scopes
Genes & Diseases publishes rigorously peer-reviewed and high quality original articles and authoritative reviews that focus on the molecular bases of human diseases. Emphasis will be placed on hypothesis-driven, mechanistic studies relevant to pathogenesis and/or experimental therapeutics of human diseases. The journal has worldwide authorship, and a broad scope in basic and translational biomedical research of molecular biology, molecular genetics, and cell biology, including but not limited to cell proliferation and apoptosis, signal transduction, stem cell biology, developmental biology, gene regulation and epigenetics, cancer biology, immunity and infection, neuroscience, disease-specific animal models, gene and cell-based therapies, and regenerative medicine.