Tianhan Xie, Eric Lichtfouse, Zaina Omary Mochiwa, Jin Wang, Bangxing Han, Li Gao
{"title":"DNA传感器检测黄曲霉毒素B1的研究进展","authors":"Tianhan Xie, Eric Lichtfouse, Zaina Omary Mochiwa, Jin Wang, Bangxing Han, Li Gao","doi":"10.1007/s10311-025-01842-7","DOIUrl":null,"url":null,"abstract":"<p>Aflatoxin B1 is a mycotoxin produced by the fungus <i>Aspergillus</i> that contaminates food, notably grains and peanuts. Aflatoxin B1 is hepatotoxic, causing necrosis, and cirrhosis, and is classified as an hepatocarcinogen. Traditional methods for detecting aflatoxin B1 such as thin-layer chromatography, high-performance liquid chromatography, enzyme-linked immunoassay, and liquid chromatography–tandem mass spectrometry, have limitations including high costs, complex preparation procedures, and occasionally low sensitivity. Here, we review DNA-based biosensors for aflatoxin B1 detection with emphasis on electrochemical and optical sensors. Electrochemical biosensors are based on electrochemical impedance spectroscopy, amperometry, voltammetry, and potentiometry. Optical sensors involve colorimetry, surface plasmon resonance, fluorescence, and electrochemiluminescence. Sensors combine nano and composite materials, such as gold nanoparticles, black phosphorus nanosheets, graphene oxide, niobium carbide, photonic crystals, and liquid crystals. DNA-based biosensors, such as aptamer biosensors, are efficient, rapid, sensitive, affordable, and selective to detecting contaminants and pathogens.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"27 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of aflatoxin B1 using DNA sensors: a review\",\"authors\":\"Tianhan Xie, Eric Lichtfouse, Zaina Omary Mochiwa, Jin Wang, Bangxing Han, Li Gao\",\"doi\":\"10.1007/s10311-025-01842-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aflatoxin B1 is a mycotoxin produced by the fungus <i>Aspergillus</i> that contaminates food, notably grains and peanuts. Aflatoxin B1 is hepatotoxic, causing necrosis, and cirrhosis, and is classified as an hepatocarcinogen. Traditional methods for detecting aflatoxin B1 such as thin-layer chromatography, high-performance liquid chromatography, enzyme-linked immunoassay, and liquid chromatography–tandem mass spectrometry, have limitations including high costs, complex preparation procedures, and occasionally low sensitivity. Here, we review DNA-based biosensors for aflatoxin B1 detection with emphasis on electrochemical and optical sensors. Electrochemical biosensors are based on electrochemical impedance spectroscopy, amperometry, voltammetry, and potentiometry. Optical sensors involve colorimetry, surface plasmon resonance, fluorescence, and electrochemiluminescence. Sensors combine nano and composite materials, such as gold nanoparticles, black phosphorus nanosheets, graphene oxide, niobium carbide, photonic crystals, and liquid crystals. DNA-based biosensors, such as aptamer biosensors, are efficient, rapid, sensitive, affordable, and selective to detecting contaminants and pathogens.</p>\",\"PeriodicalId\":541,\"journal\":{\"name\":\"Environmental Chemistry Letters\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10311-025-01842-7\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10311-025-01842-7","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Detection of aflatoxin B1 using DNA sensors: a review
Aflatoxin B1 is a mycotoxin produced by the fungus Aspergillus that contaminates food, notably grains and peanuts. Aflatoxin B1 is hepatotoxic, causing necrosis, and cirrhosis, and is classified as an hepatocarcinogen. Traditional methods for detecting aflatoxin B1 such as thin-layer chromatography, high-performance liquid chromatography, enzyme-linked immunoassay, and liquid chromatography–tandem mass spectrometry, have limitations including high costs, complex preparation procedures, and occasionally low sensitivity. Here, we review DNA-based biosensors for aflatoxin B1 detection with emphasis on electrochemical and optical sensors. Electrochemical biosensors are based on electrochemical impedance spectroscopy, amperometry, voltammetry, and potentiometry. Optical sensors involve colorimetry, surface plasmon resonance, fluorescence, and electrochemiluminescence. Sensors combine nano and composite materials, such as gold nanoparticles, black phosphorus nanosheets, graphene oxide, niobium carbide, photonic crystals, and liquid crystals. DNA-based biosensors, such as aptamer biosensors, are efficient, rapid, sensitive, affordable, and selective to detecting contaminants and pathogens.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.