通过深度挖掘宏基因组基序来工程噬菌体

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Phil Huss, Kristopher Kieft, Anthony Meger, Kyle Nishikawa, Karthik Anantharaman, Srivatsan Raman
{"title":"通过深度挖掘宏基因组基序来工程噬菌体","authors":"Phil Huss,&nbsp;Kristopher Kieft,&nbsp;Anthony Meger,&nbsp;Kyle Nishikawa,&nbsp;Karthik Anantharaman,&nbsp;Srivatsan Raman","doi":"10.1126/sciadv.adt6432","DOIUrl":null,"url":null,"abstract":"<div >Bacteriophages can adapt to new hosts by altering sequence motifs through recombination or convergent evolution. Where these motifs exist and what fitness advantage they confer remains largely unknown. We report a new method, Metagenomic Sequence Informed Functional Scoring (Meta-SIFT), to find sequence motifs in metagenomic datasets to engineer phage activity. Meta-SIFT uses experimental deep mutational scanning data to create sequence profiles to mine metagenomes for functional motifs invisible to other searches. We experimentally tested ~17,000 Meta-SIFT–derived sequence motifs in the receptor binding protein of the T7 phage. The screen revealed thousands of T7 variants with novel host specificity with motifs sourced from distant families. Position, substitution, and location preferences dictated specificity across a panel of 20 hosts and conditions. To demonstrate therapeutic utility, we engineered active T7 variants against foodborne pathogen <i>Escherichia coli</i> O121. Meta-SIFT is a powerful tool to unlock the potential encoded in phage metagenomes to engineer bacteriophages.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 16","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt6432","citationCount":"0","resultStr":"{\"title\":\"Engineering bacteriophages through deep mining of metagenomic motifs\",\"authors\":\"Phil Huss,&nbsp;Kristopher Kieft,&nbsp;Anthony Meger,&nbsp;Kyle Nishikawa,&nbsp;Karthik Anantharaman,&nbsp;Srivatsan Raman\",\"doi\":\"10.1126/sciadv.adt6432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Bacteriophages can adapt to new hosts by altering sequence motifs through recombination or convergent evolution. Where these motifs exist and what fitness advantage they confer remains largely unknown. We report a new method, Metagenomic Sequence Informed Functional Scoring (Meta-SIFT), to find sequence motifs in metagenomic datasets to engineer phage activity. Meta-SIFT uses experimental deep mutational scanning data to create sequence profiles to mine metagenomes for functional motifs invisible to other searches. We experimentally tested ~17,000 Meta-SIFT–derived sequence motifs in the receptor binding protein of the T7 phage. The screen revealed thousands of T7 variants with novel host specificity with motifs sourced from distant families. Position, substitution, and location preferences dictated specificity across a panel of 20 hosts and conditions. To demonstrate therapeutic utility, we engineered active T7 variants against foodborne pathogen <i>Escherichia coli</i> O121. Meta-SIFT is a powerful tool to unlock the potential encoded in phage metagenomes to engineer bacteriophages.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 16\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adt6432\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adt6432\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt6432","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

噬菌体可以通过重组或趋同进化改变序列基序来适应新的宿主。这些基序在哪里存在,以及它们赋予了什么样的适应性优势,在很大程度上仍然未知。我们报告了一种新的方法,宏基因组序列信息功能评分(Meta-SIFT),在宏基因组数据集中寻找序列基序来设计噬菌体活性。Meta-SIFT使用实验深度突变扫描数据来创建序列概况,以挖掘其他搜索不可见的功能基序元基因组。我们实验检测了T7噬菌体受体结合蛋白中约17,000个meta - sift衍生的序列基序。筛选结果显示,数千种T7变异具有新的宿主特异性,其基元来自远亲家族。位置、替代和位置偏好决定了20个宿主和条件的特异性。为了证明治疗效用,我们设计了抗食源性病原体大肠杆菌O121的活性T7变体。Meta-SIFT是一种强大的工具,可以解锁噬菌体宏基因组编码的潜力,从而设计噬菌体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering bacteriophages through deep mining of metagenomic motifs

Engineering bacteriophages through deep mining of metagenomic motifs
Bacteriophages can adapt to new hosts by altering sequence motifs through recombination or convergent evolution. Where these motifs exist and what fitness advantage they confer remains largely unknown. We report a new method, Metagenomic Sequence Informed Functional Scoring (Meta-SIFT), to find sequence motifs in metagenomic datasets to engineer phage activity. Meta-SIFT uses experimental deep mutational scanning data to create sequence profiles to mine metagenomes for functional motifs invisible to other searches. We experimentally tested ~17,000 Meta-SIFT–derived sequence motifs in the receptor binding protein of the T7 phage. The screen revealed thousands of T7 variants with novel host specificity with motifs sourced from distant families. Position, substitution, and location preferences dictated specificity across a panel of 20 hosts and conditions. To demonstrate therapeutic utility, we engineered active T7 variants against foodborne pathogen Escherichia coli O121. Meta-SIFT is a powerful tool to unlock the potential encoded in phage metagenomes to engineer bacteriophages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信