Matilde Castelli, Mario Sousa, Illner Vojtech, Michael Single, Deborah Amstutz, Marie Elise Maradan-Gachet, Andreia D. Magalhães, Ines Debove, Jan Rusz, Pablo Martinez-Martin, Raphael Sznitman, Paul Krack, Tobias Nef
{"title":"使用患者自己的语言来检测帕金森病的神经精神波动:大型语言模型的潜力","authors":"Matilde Castelli, Mario Sousa, Illner Vojtech, Michael Single, Deborah Amstutz, Marie Elise Maradan-Gachet, Andreia D. Magalhães, Ines Debove, Jan Rusz, Pablo Martinez-Martin, Raphael Sznitman, Paul Krack, Tobias Nef","doi":"10.1038/s41531-025-00939-8","DOIUrl":null,"url":null,"abstract":"<p>Over the past decade, neuropsychiatric fluctuations in Parkinson’s disease (PD) have been increasingly recognized for their impact on patients’ quality of life. Speech, a complex function carrying motor, emotional, and cognitive information, offers potential insights into these fluctuations. While previous studies have focused on acoustic analysis to assess motor speech disorders reliably, the potential of linguistic patterns associated with neuropsychiatric fluctuations in PD remains unexplored. This study analyzed the content of spontaneous speech from 33 PD patients in ON and OFF medication states, using machine learning and large language models (LLMs) to predict medication states and a neuropsychiatric state score. The top-performing model, the LLM Gemma-2 (9B), achieved 98% accuracy in differentiating ON and OFF states and its predicted scores were highly correlated with actual scores (Spearman’s ρ = 0.81). These methods could provide a more comprehensive assessment of PD treatment effects, allowing remote neuropsychiatric symptom monitoring via mobile devices.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"29 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting neuropsychiatric fluctuations in Parkinson’s Disease using patients’ own words: the potential of large language models\",\"authors\":\"Matilde Castelli, Mario Sousa, Illner Vojtech, Michael Single, Deborah Amstutz, Marie Elise Maradan-Gachet, Andreia D. Magalhães, Ines Debove, Jan Rusz, Pablo Martinez-Martin, Raphael Sznitman, Paul Krack, Tobias Nef\",\"doi\":\"10.1038/s41531-025-00939-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Over the past decade, neuropsychiatric fluctuations in Parkinson’s disease (PD) have been increasingly recognized for their impact on patients’ quality of life. Speech, a complex function carrying motor, emotional, and cognitive information, offers potential insights into these fluctuations. While previous studies have focused on acoustic analysis to assess motor speech disorders reliably, the potential of linguistic patterns associated with neuropsychiatric fluctuations in PD remains unexplored. This study analyzed the content of spontaneous speech from 33 PD patients in ON and OFF medication states, using machine learning and large language models (LLMs) to predict medication states and a neuropsychiatric state score. The top-performing model, the LLM Gemma-2 (9B), achieved 98% accuracy in differentiating ON and OFF states and its predicted scores were highly correlated with actual scores (Spearman’s ρ = 0.81). These methods could provide a more comprehensive assessment of PD treatment effects, allowing remote neuropsychiatric symptom monitoring via mobile devices.</p>\",\"PeriodicalId\":19706,\"journal\":{\"name\":\"NPJ Parkinson's Disease\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Parkinson's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41531-025-00939-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-00939-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Detecting neuropsychiatric fluctuations in Parkinson’s Disease using patients’ own words: the potential of large language models
Over the past decade, neuropsychiatric fluctuations in Parkinson’s disease (PD) have been increasingly recognized for their impact on patients’ quality of life. Speech, a complex function carrying motor, emotional, and cognitive information, offers potential insights into these fluctuations. While previous studies have focused on acoustic analysis to assess motor speech disorders reliably, the potential of linguistic patterns associated with neuropsychiatric fluctuations in PD remains unexplored. This study analyzed the content of spontaneous speech from 33 PD patients in ON and OFF medication states, using machine learning and large language models (LLMs) to predict medication states and a neuropsychiatric state score. The top-performing model, the LLM Gemma-2 (9B), achieved 98% accuracy in differentiating ON and OFF states and its predicted scores were highly correlated with actual scores (Spearman’s ρ = 0.81). These methods could provide a more comprehensive assessment of PD treatment effects, allowing remote neuropsychiatric symptom monitoring via mobile devices.
期刊介绍:
npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.