可控双取代工程实现高电压下高稳定性p2型富锰阴极

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yi He , Jinqiang Gao , Haoji Wang , Weishun Jian , Jiangnan Huang , Datong Zhang , Kangyu Zou , Wentao Deng , Hongshuai Hou , Guoqiang Zou , Xiaobo Ji
{"title":"可控双取代工程实现高电压下高稳定性p2型富锰阴极","authors":"Yi He ,&nbsp;Jinqiang Gao ,&nbsp;Haoji Wang ,&nbsp;Weishun Jian ,&nbsp;Jiangnan Huang ,&nbsp;Datong Zhang ,&nbsp;Kangyu Zou ,&nbsp;Wentao Deng ,&nbsp;Hongshuai Hou ,&nbsp;Guoqiang Zou ,&nbsp;Xiaobo Ji","doi":"10.1016/j.nanoen.2025.111040","DOIUrl":null,"url":null,"abstract":"<div><div>P2-type Na<sub>0.67</sub>MnO<sub>2</sub> (NM) cathodes represent a cost-effective and promising material for sodium-ion batteries (SIBs). Suppressing undesirable phase transformations and Jahn-Teller is quite a challenge for the design of high stability Mn-rich cathodes. Herein, we design and optimize the preparation of Ni and Ti dual-substituted P2-type Mn-rich Na<sub>0.67</sub>Ni<sub>x</sub>Mn<sub>0.8</sub>Ti<sub>0.2-x</sub>O<sub>2</sub> (0 ≤x ≤ 0.2), with the goal to enhancing structural stability and facilitating fast Na<sup>+</sup> diffusion under high voltage. The Na<sub>0.67</sub>Ni<sub>0.15</sub>Mn<sub>0.8</sub>Ti<sub>0.05</sub>O<sub>2</sub> (NN<sub>0.15</sub>M<sub>0.8</sub>T<sub>0.05</sub>) exhibits a narrower bandgap, stronger transition metal (TM)-O bonds, and lower Na<sup>+</sup> migration energy barriers compared to P2-Na<sub>0.67</sub>MnO<sub>2</sub> (NM) as demonstrated by DFT results. X-ray absorption spectroscopy (XAS) reveals the charge compensation mechanism of Ni, indicating that the average working voltage is enhanced by Ni. In-situ X-ray diffraction (XRD) show NN<sub>0.15</sub>M<sub>0.8</sub>T<sub>0.05</sub> efficiently suppressing the O-P stacking fault defect transitions observed in the Ni single composition by stabilizing the reversible P2/OP4 structure at high voltage. As a result, NN<sub>0.15</sub>M<sub>0.8</sub>T<sub>0.05</sub> achieves a high energy density of over 460 Wh/kg within the voltage range of 2–4.3 V, along with significantly improved capacity retention and rate capability. Altogether, the findings reveal that the controllable dual-substitution engineering strategy offers a promising and feasible approach for designing cathode materials in sodium-ion batteries (SIBs).</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"140 ","pages":"Article 111040"},"PeriodicalIF":16.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllable dual-substitution engineering enable high stability P2-type Mn-rich cathodes under high voltage\",\"authors\":\"Yi He ,&nbsp;Jinqiang Gao ,&nbsp;Haoji Wang ,&nbsp;Weishun Jian ,&nbsp;Jiangnan Huang ,&nbsp;Datong Zhang ,&nbsp;Kangyu Zou ,&nbsp;Wentao Deng ,&nbsp;Hongshuai Hou ,&nbsp;Guoqiang Zou ,&nbsp;Xiaobo Ji\",\"doi\":\"10.1016/j.nanoen.2025.111040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>P2-type Na<sub>0.67</sub>MnO<sub>2</sub> (NM) cathodes represent a cost-effective and promising material for sodium-ion batteries (SIBs). Suppressing undesirable phase transformations and Jahn-Teller is quite a challenge for the design of high stability Mn-rich cathodes. Herein, we design and optimize the preparation of Ni and Ti dual-substituted P2-type Mn-rich Na<sub>0.67</sub>Ni<sub>x</sub>Mn<sub>0.8</sub>Ti<sub>0.2-x</sub>O<sub>2</sub> (0 ≤x ≤ 0.2), with the goal to enhancing structural stability and facilitating fast Na<sup>+</sup> diffusion under high voltage. The Na<sub>0.67</sub>Ni<sub>0.15</sub>Mn<sub>0.8</sub>Ti<sub>0.05</sub>O<sub>2</sub> (NN<sub>0.15</sub>M<sub>0.8</sub>T<sub>0.05</sub>) exhibits a narrower bandgap, stronger transition metal (TM)-O bonds, and lower Na<sup>+</sup> migration energy barriers compared to P2-Na<sub>0.67</sub>MnO<sub>2</sub> (NM) as demonstrated by DFT results. X-ray absorption spectroscopy (XAS) reveals the charge compensation mechanism of Ni, indicating that the average working voltage is enhanced by Ni. In-situ X-ray diffraction (XRD) show NN<sub>0.15</sub>M<sub>0.8</sub>T<sub>0.05</sub> efficiently suppressing the O-P stacking fault defect transitions observed in the Ni single composition by stabilizing the reversible P2/OP4 structure at high voltage. As a result, NN<sub>0.15</sub>M<sub>0.8</sub>T<sub>0.05</sub> achieves a high energy density of over 460 Wh/kg within the voltage range of 2–4.3 V, along with significantly improved capacity retention and rate capability. Altogether, the findings reveal that the controllable dual-substitution engineering strategy offers a promising and feasible approach for designing cathode materials in sodium-ion batteries (SIBs).</div></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"140 \",\"pages\":\"Article 111040\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285525003994\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525003994","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

p2型Na0.67MnO2 (NM)阴极是一种具有成本效益和发展前景的钠离子电池材料。抑制不良相变和jann - teller是设计高稳定性富锰阴极的一大挑战。本文设计并优化了Ni和Ti双取代p2型富锰Na0.67NixMn0.8Ti0.2-xO2(0≤x≤0.2)的制备,以提高结构稳定性,促进Na+在高压下的快速扩散。DFT结果表明,与P2-Na0.67MnO2 (NM)相比,Na0.67Ni0.15Mn0.8Ti0.05O2 (NN0.15M0.8T0.05)具有更窄的带隙、更强的过渡金属(TM)-O键和更低的Na+迁移能垒。x射线吸收光谱(XAS)揭示了Ni的电荷补偿机制,表明Ni提高了平均工作电压。原位x射线衍射(XRD)结果表明,NN0.15M0.8T0.05通过在高压下稳定可逆的P2/OP4结构,有效抑制了Ni单组分中O-P层错缺陷的转变。因此,NN0.15M0.8T0.05在2-4.3 V电压范围内实现了超过460 Wh/kg的高能量密度,并显著提高了容量保持和速率能力。总之,研究结果表明,可控双替代工程策略为钠离子电池正极材料的设计提供了一种有前途的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Controllable dual-substitution engineering enable high stability P2-type Mn-rich cathodes under high voltage

Controllable dual-substitution engineering enable high stability P2-type Mn-rich cathodes under high voltage
P2-type Na0.67MnO2 (NM) cathodes represent a cost-effective and promising material for sodium-ion batteries (SIBs). Suppressing undesirable phase transformations and Jahn-Teller is quite a challenge for the design of high stability Mn-rich cathodes. Herein, we design and optimize the preparation of Ni and Ti dual-substituted P2-type Mn-rich Na0.67NixMn0.8Ti0.2-xO2 (0 ≤x ≤ 0.2), with the goal to enhancing structural stability and facilitating fast Na+ diffusion under high voltage. The Na0.67Ni0.15Mn0.8Ti0.05O2 (NN0.15M0.8T0.05) exhibits a narrower bandgap, stronger transition metal (TM)-O bonds, and lower Na+ migration energy barriers compared to P2-Na0.67MnO2 (NM) as demonstrated by DFT results. X-ray absorption spectroscopy (XAS) reveals the charge compensation mechanism of Ni, indicating that the average working voltage is enhanced by Ni. In-situ X-ray diffraction (XRD) show NN0.15M0.8T0.05 efficiently suppressing the O-P stacking fault defect transitions observed in the Ni single composition by stabilizing the reversible P2/OP4 structure at high voltage. As a result, NN0.15M0.8T0.05 achieves a high energy density of over 460 Wh/kg within the voltage range of 2–4.3 V, along with significantly improved capacity retention and rate capability. Altogether, the findings reveal that the controllable dual-substitution engineering strategy offers a promising and feasible approach for designing cathode materials in sodium-ion batteries (SIBs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信