{"title":"整合全基因组和转录组关联研究的孤儿病治疗靶点预测","authors":"Satoko Namba, Michio Iwata, Shin-Ichi Nureki, Noriko Yuyama Otani, Yoshihiro Yamanishi","doi":"10.1038/s41467-025-58464-4","DOIUrl":null,"url":null,"abstract":"<p>Therapeutic target identification is challenging in drug discovery, particularly for rare and orphan diseases. Here, we propose a disease signature, TRESOR, which characterizes the functional mechanisms of each disease through genome-wide association study (GWAS) and transcriptome-wide association study (TWAS) data, and develop machine learning methods for predicting inhibitory and activatory therapeutic targets for various diseases from target perturbation signatures (i.e., gene knockdown and overexpression). TRESOR enables highly accurate identification of target candidate proteins that counteract disease-specific transcriptome patterns, and the Bayesian optimization with omics-based disease similarities achieves the performance enhancement for diseases with few or no known targets. We make comprehensive predictions for 284 diseases with 4345 inhibitory target candidates and 151 diseases with 4040 activatory target candidates, and elaborate the promising targets using several independent cohorts. The methods are expected to be useful for understanding disease–disease relationships and identifying therapeutic targets for rare and orphan diseases.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"24 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Therapeutic target prediction for orphan diseases integrating genome-wide and transcriptome-wide association studies\",\"authors\":\"Satoko Namba, Michio Iwata, Shin-Ichi Nureki, Noriko Yuyama Otani, Yoshihiro Yamanishi\",\"doi\":\"10.1038/s41467-025-58464-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Therapeutic target identification is challenging in drug discovery, particularly for rare and orphan diseases. Here, we propose a disease signature, TRESOR, which characterizes the functional mechanisms of each disease through genome-wide association study (GWAS) and transcriptome-wide association study (TWAS) data, and develop machine learning methods for predicting inhibitory and activatory therapeutic targets for various diseases from target perturbation signatures (i.e., gene knockdown and overexpression). TRESOR enables highly accurate identification of target candidate proteins that counteract disease-specific transcriptome patterns, and the Bayesian optimization with omics-based disease similarities achieves the performance enhancement for diseases with few or no known targets. We make comprehensive predictions for 284 diseases with 4345 inhibitory target candidates and 151 diseases with 4040 activatory target candidates, and elaborate the promising targets using several independent cohorts. The methods are expected to be useful for understanding disease–disease relationships and identifying therapeutic targets for rare and orphan diseases.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58464-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58464-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Therapeutic target prediction for orphan diseases integrating genome-wide and transcriptome-wide association studies
Therapeutic target identification is challenging in drug discovery, particularly for rare and orphan diseases. Here, we propose a disease signature, TRESOR, which characterizes the functional mechanisms of each disease through genome-wide association study (GWAS) and transcriptome-wide association study (TWAS) data, and develop machine learning methods for predicting inhibitory and activatory therapeutic targets for various diseases from target perturbation signatures (i.e., gene knockdown and overexpression). TRESOR enables highly accurate identification of target candidate proteins that counteract disease-specific transcriptome patterns, and the Bayesian optimization with omics-based disease similarities achieves the performance enhancement for diseases with few or no known targets. We make comprehensive predictions for 284 diseases with 4345 inhibitory target candidates and 151 diseases with 4040 activatory target candidates, and elaborate the promising targets using several independent cohorts. The methods are expected to be useful for understanding disease–disease relationships and identifying therapeutic targets for rare and orphan diseases.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.