{"title":"高居里温度下LaFeO3/LaNiO3超晶格的铁磁性","authors":"Tianlin Zhou, Fei Gao, Qinghua Zhang, Yuansha Chen, Xinzhe Hu, Yuzhou He, Yuchen Zhao, Jianjie Li, Minghang Li, Shaojin Qi, Fengxia Hu, Jirong Sun, Yunzhong Chen, Baogen Shen","doi":"10.1038/s41467-025-58968-z","DOIUrl":null,"url":null,"abstract":"<p>Interfacing complex oxides in atomically engineered layered structures can give rise to a wealth of exceptional electronic and magnetic properties that surpass those of the individual building blocks. Herein, we demonstrate a ferromagnetic spin order with a high Curie temperature of 608 K in superlattices consisting of otherwise paramagnetic perovskite LaNiO<sub>3</sub> (LNO) and antiferromagnetic LaFeO<sub>3</sub> (LFO). The ferromagnetism likely results from the covalent exchange due to interfacial charge transfer from Fe to Ni cations. By deliberately controlling the thickness of the LNO sublayers thus the amount of charge transfer, a robust ferromagnetism of 4 <i>u</i><sub>B</sub> is realized for a stacking periodicity consisting of one single unit cell of both LNO and LFO, an emergent double perovskite phase of La<sub>2</sub>FeNiO<sub>6</sub> with B-site layered ordering configurations. The ferromagnetic LFO/LNO superlattices offer great potential for the search of emergent magnetodielectric and/or multiferroic properties as well as applications in spintronics and electrocatalysts.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"9 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferromagnetism in LaFeO3/LaNiO3 superlattices with high Curie temperature\",\"authors\":\"Tianlin Zhou, Fei Gao, Qinghua Zhang, Yuansha Chen, Xinzhe Hu, Yuzhou He, Yuchen Zhao, Jianjie Li, Minghang Li, Shaojin Qi, Fengxia Hu, Jirong Sun, Yunzhong Chen, Baogen Shen\",\"doi\":\"10.1038/s41467-025-58968-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Interfacing complex oxides in atomically engineered layered structures can give rise to a wealth of exceptional electronic and magnetic properties that surpass those of the individual building blocks. Herein, we demonstrate a ferromagnetic spin order with a high Curie temperature of 608 K in superlattices consisting of otherwise paramagnetic perovskite LaNiO<sub>3</sub> (LNO) and antiferromagnetic LaFeO<sub>3</sub> (LFO). The ferromagnetism likely results from the covalent exchange due to interfacial charge transfer from Fe to Ni cations. By deliberately controlling the thickness of the LNO sublayers thus the amount of charge transfer, a robust ferromagnetism of 4 <i>u</i><sub>B</sub> is realized for a stacking periodicity consisting of one single unit cell of both LNO and LFO, an emergent double perovskite phase of La<sub>2</sub>FeNiO<sub>6</sub> with B-site layered ordering configurations. The ferromagnetic LFO/LNO superlattices offer great potential for the search of emergent magnetodielectric and/or multiferroic properties as well as applications in spintronics and electrocatalysts.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58968-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58968-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Ferromagnetism in LaFeO3/LaNiO3 superlattices with high Curie temperature
Interfacing complex oxides in atomically engineered layered structures can give rise to a wealth of exceptional electronic and magnetic properties that surpass those of the individual building blocks. Herein, we demonstrate a ferromagnetic spin order with a high Curie temperature of 608 K in superlattices consisting of otherwise paramagnetic perovskite LaNiO3 (LNO) and antiferromagnetic LaFeO3 (LFO). The ferromagnetism likely results from the covalent exchange due to interfacial charge transfer from Fe to Ni cations. By deliberately controlling the thickness of the LNO sublayers thus the amount of charge transfer, a robust ferromagnetism of 4 uB is realized for a stacking periodicity consisting of one single unit cell of both LNO and LFO, an emergent double perovskite phase of La2FeNiO6 with B-site layered ordering configurations. The ferromagnetic LFO/LNO superlattices offer great potential for the search of emergent magnetodielectric and/or multiferroic properties as well as applications in spintronics and electrocatalysts.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.