Sheng-Yi Yang, Liang Zhang, Fan-Cheng Kong, Yingying Chen, Wei-Jian Li, Fei Wang, Cheng Liu, Xuan He, Xuedong Xiao, Jin Wang, Jianwei Sun, Philip C.Y. Chow, Ryan T.K. Kwok, Jacky W.Y. Lam, Ben Zhong Tang
{"title":"具有聚集诱导发射的闪烁体","authors":"Sheng-Yi Yang, Liang Zhang, Fan-Cheng Kong, Yingying Chen, Wei-Jian Li, Fei Wang, Cheng Liu, Xuan He, Xuedong Xiao, Jin Wang, Jianwei Sun, Philip C.Y. Chow, Ryan T.K. Kwok, Jacky W.Y. Lam, Ben Zhong Tang","doi":"10.1016/j.chempr.2025.102534","DOIUrl":null,"url":null,"abstract":"Scintillators are vital components in high-energy radiation detectors and are used in fields like high-energy physics, non-destructive testing, radiochemistry, and medical diagnostics. Scintillators with aggregation-induced emission (AIE), through rational molecular design and preparation techniques, can be endowed with such properties that effectively overcome the inherent defects of existing inorganic and/or organic scintillators, such as high costs and poor mechanical properties in inorganic types and low light yield and aggregation-caused quenching for organic kinds, thus affording novel optoelectronic properties, superior performance, and broader applications. This review classifies AIE scintillators from a molecular perspective, based on their luminescence mechanisms and construction strategies, into fluorescent scintillators, thermally activated delayed fluorescence scintillators, metal cluster scintillators, organic-inorganic hybrid scintillators, and metal-organic framework scintillators. This review starts with analyses of these building strategies and the structure-performance relationships and then describes the applications of AIE scintillators based on their molecular structures and optoelectronic properties.","PeriodicalId":268,"journal":{"name":"Chem","volume":"75 5 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scintillators with aggregation-induced emission\",\"authors\":\"Sheng-Yi Yang, Liang Zhang, Fan-Cheng Kong, Yingying Chen, Wei-Jian Li, Fei Wang, Cheng Liu, Xuan He, Xuedong Xiao, Jin Wang, Jianwei Sun, Philip C.Y. Chow, Ryan T.K. Kwok, Jacky W.Y. Lam, Ben Zhong Tang\",\"doi\":\"10.1016/j.chempr.2025.102534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scintillators are vital components in high-energy radiation detectors and are used in fields like high-energy physics, non-destructive testing, radiochemistry, and medical diagnostics. Scintillators with aggregation-induced emission (AIE), through rational molecular design and preparation techniques, can be endowed with such properties that effectively overcome the inherent defects of existing inorganic and/or organic scintillators, such as high costs and poor mechanical properties in inorganic types and low light yield and aggregation-caused quenching for organic kinds, thus affording novel optoelectronic properties, superior performance, and broader applications. This review classifies AIE scintillators from a molecular perspective, based on their luminescence mechanisms and construction strategies, into fluorescent scintillators, thermally activated delayed fluorescence scintillators, metal cluster scintillators, organic-inorganic hybrid scintillators, and metal-organic framework scintillators. This review starts with analyses of these building strategies and the structure-performance relationships and then describes the applications of AIE scintillators based on their molecular structures and optoelectronic properties.\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"75 5 1\",\"pages\":\"\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chempr.2025.102534\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102534","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Scintillators are vital components in high-energy radiation detectors and are used in fields like high-energy physics, non-destructive testing, radiochemistry, and medical diagnostics. Scintillators with aggregation-induced emission (AIE), through rational molecular design and preparation techniques, can be endowed with such properties that effectively overcome the inherent defects of existing inorganic and/or organic scintillators, such as high costs and poor mechanical properties in inorganic types and low light yield and aggregation-caused quenching for organic kinds, thus affording novel optoelectronic properties, superior performance, and broader applications. This review classifies AIE scintillators from a molecular perspective, based on their luminescence mechanisms and construction strategies, into fluorescent scintillators, thermally activated delayed fluorescence scintillators, metal cluster scintillators, organic-inorganic hybrid scintillators, and metal-organic framework scintillators. This review starts with analyses of these building strategies and the structure-performance relationships and then describes the applications of AIE scintillators based on their molecular structures and optoelectronic properties.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.