通过原位聚合策略稳定锂金属阳极的离子导电可拉伸有机凝胶聚合物界面层

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yunsong Cui, Yuhan Li, You Zhou, Xinyu Liu, Junhao Lv
{"title":"通过原位聚合策略稳定锂金属阳极的离子导电可拉伸有机凝胶聚合物界面层","authors":"Yunsong Cui, Yuhan Li, You Zhou, Xinyu Liu, Junhao Lv","doi":"10.1021/acsami.5c03168","DOIUrl":null,"url":null,"abstract":"The uncontrollable growth of lithium dendrites and the unstable interface of the lithium metal anode/electrolyte inhibit potential large-scale applications of lithium metal batteries. The polymer artificial solid–electrolyte interface layer shows potential for the homogeneity of ion flux toward a lithium metal electrode. Herein, we design an ionic conductive and stretchable organogel polymer layer as the artificial protective layer via in situ polymerization on an active lithium metal anode, which can accommodate volume changes and maintain enhanced interfacial contact with the electrode. The propylene carbonate and the long alkyl ether in the polymer protective layer contribute to the inducing of uniform Li deposition and enhance ion transport. In addition, the in situ polymerization membrane adheres tightly to the lithium metal anode, which can effectively eliminate the barriers of ionic transport at heterogeneous interfaces and has stretchable strength tending to suppress Li dendrites. As a result, the Li/Li symmetric cell with this artificial polymeric protect layer can stably cycle for over 800 h under 1 mA cm<sup>–2</sup> without increased polarization voltage, while the corresponding lithium metal/LiFePO<sub>4</sub> full battery delivers high-capacity retention of 102.6, 127.7, and 136.7% after 244, 862, and 976 cycles at 0.3, 1, and 2 C. Furthermore, the lithium metal battery equipped with this artificial layer also shows longer cycling life and higher reversible specific capacity (130.24 mAh g<sup>–1</sup>) under 1 C and enhanced rate performance than bare Li battery.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"34 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ion-Conducting and Stretchable Organogel Polymer Interface Layer for Stabilizing Lithium Metal Anodes via In Situ Polymerization Strategy\",\"authors\":\"Yunsong Cui, Yuhan Li, You Zhou, Xinyu Liu, Junhao Lv\",\"doi\":\"10.1021/acsami.5c03168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The uncontrollable growth of lithium dendrites and the unstable interface of the lithium metal anode/electrolyte inhibit potential large-scale applications of lithium metal batteries. The polymer artificial solid–electrolyte interface layer shows potential for the homogeneity of ion flux toward a lithium metal electrode. Herein, we design an ionic conductive and stretchable organogel polymer layer as the artificial protective layer via in situ polymerization on an active lithium metal anode, which can accommodate volume changes and maintain enhanced interfacial contact with the electrode. The propylene carbonate and the long alkyl ether in the polymer protective layer contribute to the inducing of uniform Li deposition and enhance ion transport. In addition, the in situ polymerization membrane adheres tightly to the lithium metal anode, which can effectively eliminate the barriers of ionic transport at heterogeneous interfaces and has stretchable strength tending to suppress Li dendrites. As a result, the Li/Li symmetric cell with this artificial polymeric protect layer can stably cycle for over 800 h under 1 mA cm<sup>–2</sup> without increased polarization voltage, while the corresponding lithium metal/LiFePO<sub>4</sub> full battery delivers high-capacity retention of 102.6, 127.7, and 136.7% after 244, 862, and 976 cycles at 0.3, 1, and 2 C. Furthermore, the lithium metal battery equipped with this artificial layer also shows longer cycling life and higher reversible specific capacity (130.24 mAh g<sup>–1</sup>) under 1 C and enhanced rate performance than bare Li battery.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c03168\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c03168","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂枝晶的不可控生长和锂金属阳极/电解质界面的不稳定抑制了锂金属电池大规模应用的潜力。聚合物人工固体-电解质界面层显示出离子流向锂金属电极的均匀性。在此,我们通过原位聚合在活性锂金属阳极上设计了一种离子导电性和可拉伸的有机凝胶聚合物层作为人工保护层,该层可以适应体积变化并保持与电极的增强界面接触。聚合物保护层中的碳酸丙烯酯和长烷基醚有助于诱导Li均匀沉积,增强离子输运。此外,原位聚合膜与锂金属阳极紧密结合,可以有效消除非均相界面上离子传输的障碍,并且具有倾向于抑制锂枝晶的拉伸强度。结果表明,具有该人工聚合物保护层的锂/锂对称电池可以在1 mA cm-2下稳定循环800 h以上,且极化电压不增加,而相应的锂金属/LiFePO4全电池在0.3、1和2℃下循环244、862和976次后,其容量保持率分别为102.6、127.7和136.7%。与裸锂电池相比,配备该人工层的锂金属电池在1℃下具有更长的循环寿命和更高的可逆比容量(130.24 mAh g-1)和更高的倍率性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ion-Conducting and Stretchable Organogel Polymer Interface Layer for Stabilizing Lithium Metal Anodes via In Situ Polymerization Strategy

Ion-Conducting and Stretchable Organogel Polymer Interface Layer for Stabilizing Lithium Metal Anodes via In Situ Polymerization Strategy
The uncontrollable growth of lithium dendrites and the unstable interface of the lithium metal anode/electrolyte inhibit potential large-scale applications of lithium metal batteries. The polymer artificial solid–electrolyte interface layer shows potential for the homogeneity of ion flux toward a lithium metal electrode. Herein, we design an ionic conductive and stretchable organogel polymer layer as the artificial protective layer via in situ polymerization on an active lithium metal anode, which can accommodate volume changes and maintain enhanced interfacial contact with the electrode. The propylene carbonate and the long alkyl ether in the polymer protective layer contribute to the inducing of uniform Li deposition and enhance ion transport. In addition, the in situ polymerization membrane adheres tightly to the lithium metal anode, which can effectively eliminate the barriers of ionic transport at heterogeneous interfaces and has stretchable strength tending to suppress Li dendrites. As a result, the Li/Li symmetric cell with this artificial polymeric protect layer can stably cycle for over 800 h under 1 mA cm–2 without increased polarization voltage, while the corresponding lithium metal/LiFePO4 full battery delivers high-capacity retention of 102.6, 127.7, and 136.7% after 244, 862, and 976 cycles at 0.3, 1, and 2 C. Furthermore, the lithium metal battery equipped with this artificial layer also shows longer cycling life and higher reversible specific capacity (130.24 mAh g–1) under 1 C and enhanced rate performance than bare Li battery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信