Helen Shao, Jahmour J. Givans, Jo Dunkley, Mathew Madhavacheril, Frank J. Qu, Gerrit Farren, Blake Sherwin
{"title":"超ΛCDM模型的中微子质量和的宇宙学极限","authors":"Helen Shao, Jahmour J. Givans, Jo Dunkley, Mathew Madhavacheril, Frank J. Qu, Gerrit Farren, Blake Sherwin","doi":"10.1103/physrevd.111.083535","DOIUrl":null,"url":null,"abstract":"The sum of neutrino masses can be measured cosmologically, as the sub-eV particles behave as “hot” dark matter whose main effect is to suppress the clustering of matter compared to a universe with the same amount of purely cold dark matter. Current astronomical data provide an upper limit on ∑</a:mo>m</a:mi></a:mrow>ν</a:mi></a:mrow></a:msub></a:mrow></a:math> between 0.07–0.12 eV at 95% confidence, depending on the choice of data. This bound assumes that the cosmological model is <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mi mathvariant=\"normal\">Λ</c:mi></c:mrow></c:math> Cold Dark Matter (<f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mi mathvariant=\"normal\">Λ</f:mi><f:mi>CDM</f:mi></f:math>), where dark energy is a cosmological constant, the spatial geometry is flat, and the primordial fluctuations follow a pure power law. Here, we update studies on how the mass limit degrades if we relax these assumptions. To existing data from the satellite we add new gravitational lensing data from the Atacama Cosmology Telescope, the new Type Ia supernova sample from the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:mi>Pantheon</i:mi><i:mo>+</i:mo><i:mtext>survey</i:mtext></i:mrow></i:math>, and baryonic acoustic oscillation (BAO) measurements from the Sloan Digital Sky Survey and the Dark Energy Spectroscopic Instrument. Using our fiducial data combination, described in the appendix, we find the neutrino mass limit is stable to most model extensions, with such extensions degrading the limit by less than 10%. We find a broadest bound of <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:mo>∑</k:mo><k:msub><k:mrow><k:mi>m</k:mi></k:mrow><k:mrow><k:mi>ν</k:mi></k:mrow></k:msub><k:mo><</k:mo><k:mn>0.19</k:mn><k:mtext> </k:mtext><k:mtext> </k:mtext><k:mi>eV</k:mi></k:mrow></k:math> at 95% confidence for a model with dynamical dark energy, although this scenario is not statistically preferred over the simpler <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi mathvariant=\"normal\">Λ</m:mi><m:mi>CDM</m:mi></m:math> model. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"9 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cosmological limits on the neutrino mass sum for beyond- ΛCDM models\",\"authors\":\"Helen Shao, Jahmour J. Givans, Jo Dunkley, Mathew Madhavacheril, Frank J. Qu, Gerrit Farren, Blake Sherwin\",\"doi\":\"10.1103/physrevd.111.083535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sum of neutrino masses can be measured cosmologically, as the sub-eV particles behave as “hot” dark matter whose main effect is to suppress the clustering of matter compared to a universe with the same amount of purely cold dark matter. Current astronomical data provide an upper limit on ∑</a:mo>m</a:mi></a:mrow>ν</a:mi></a:mrow></a:msub></a:mrow></a:math> between 0.07–0.12 eV at 95% confidence, depending on the choice of data. This bound assumes that the cosmological model is <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mrow><c:mi mathvariant=\\\"normal\\\">Λ</c:mi></c:mrow></c:math> Cold Dark Matter (<f:math xmlns:f=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><f:mi mathvariant=\\\"normal\\\">Λ</f:mi><f:mi>CDM</f:mi></f:math>), where dark energy is a cosmological constant, the spatial geometry is flat, and the primordial fluctuations follow a pure power law. Here, we update studies on how the mass limit degrades if we relax these assumptions. To existing data from the satellite we add new gravitational lensing data from the Atacama Cosmology Telescope, the new Type Ia supernova sample from the <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mrow><i:mi>Pantheon</i:mi><i:mo>+</i:mo><i:mtext>survey</i:mtext></i:mrow></i:math>, and baryonic acoustic oscillation (BAO) measurements from the Sloan Digital Sky Survey and the Dark Energy Spectroscopic Instrument. Using our fiducial data combination, described in the appendix, we find the neutrino mass limit is stable to most model extensions, with such extensions degrading the limit by less than 10%. We find a broadest bound of <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mrow><k:mo>∑</k:mo><k:msub><k:mrow><k:mi>m</k:mi></k:mrow><k:mrow><k:mi>ν</k:mi></k:mrow></k:msub><k:mo><</k:mo><k:mn>0.19</k:mn><k:mtext> </k:mtext><k:mtext> </k:mtext><k:mi>eV</k:mi></k:mrow></k:math> at 95% confidence for a model with dynamical dark energy, although this scenario is not statistically preferred over the simpler <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mi mathvariant=\\\"normal\\\">Λ</m:mi><m:mi>CDM</m:mi></m:math> model. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.083535\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.083535","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Cosmological limits on the neutrino mass sum for beyond- ΛCDM models
The sum of neutrino masses can be measured cosmologically, as the sub-eV particles behave as “hot” dark matter whose main effect is to suppress the clustering of matter compared to a universe with the same amount of purely cold dark matter. Current astronomical data provide an upper limit on ∑mν between 0.07–0.12 eV at 95% confidence, depending on the choice of data. This bound assumes that the cosmological model is Λ Cold Dark Matter (ΛCDM), where dark energy is a cosmological constant, the spatial geometry is flat, and the primordial fluctuations follow a pure power law. Here, we update studies on how the mass limit degrades if we relax these assumptions. To existing data from the satellite we add new gravitational lensing data from the Atacama Cosmology Telescope, the new Type Ia supernova sample from the Pantheon+survey, and baryonic acoustic oscillation (BAO) measurements from the Sloan Digital Sky Survey and the Dark Energy Spectroscopic Instrument. Using our fiducial data combination, described in the appendix, we find the neutrino mass limit is stable to most model extensions, with such extensions degrading the limit by less than 10%. We find a broadest bound of ∑mν<0.19eV at 95% confidence for a model with dynamical dark energy, although this scenario is not statistically preferred over the simpler ΛCDM model. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.