{"title":"阱诱导多发射中心构建的碳点室温余辉随时间的变化","authors":"Zhun Ran, Hongjie Jia, Ziting Zhong, Hongwei Yang, Yinda Zhu, Yuqi Li, Jinkun Liu, Xuejie Zhang, Jianle Zhuang, Yingliang Liu, Bingfu Lei, Chaofan Hu","doi":"10.1021/acs.nanolett.5c00723","DOIUrl":null,"url":null,"abstract":"Traps, due to the ability to capture, store, and release charge carriers, have attracted significant attention in the construction of long afterglow materials. In this study, a one-step in situ calcination strategy was employed to fabricate carbon dot (CD)-based composites, and the traps were designed as one of the emission centers within the composite system. Upon removal of ultraviolet light, the materials showed a time-dependent afterglow color (TDAC), with the luminescent color gradually changing from orange to green. The study indicates that the dynamic afterglow results from the energy transfer from traps to the surface triplet state of the CDs. In addition, CDs generated during the in situ calcination process serve as dopants, increasing the number of original traps and facilitating the formation of new ones. Based on the TDAC characteristics, we demonstrate the applications in anti-counterfeiting and information encryption. This strategy offers new insights into the development of multicolor afterglow materials.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"151 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-Dependent Room-Temperature Afterglow of Carbon Dots Constructed by Trap-Induced Multiemission Centers\",\"authors\":\"Zhun Ran, Hongjie Jia, Ziting Zhong, Hongwei Yang, Yinda Zhu, Yuqi Li, Jinkun Liu, Xuejie Zhang, Jianle Zhuang, Yingliang Liu, Bingfu Lei, Chaofan Hu\",\"doi\":\"10.1021/acs.nanolett.5c00723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traps, due to the ability to capture, store, and release charge carriers, have attracted significant attention in the construction of long afterglow materials. In this study, a one-step in situ calcination strategy was employed to fabricate carbon dot (CD)-based composites, and the traps were designed as one of the emission centers within the composite system. Upon removal of ultraviolet light, the materials showed a time-dependent afterglow color (TDAC), with the luminescent color gradually changing from orange to green. The study indicates that the dynamic afterglow results from the energy transfer from traps to the surface triplet state of the CDs. In addition, CDs generated during the in situ calcination process serve as dopants, increasing the number of original traps and facilitating the formation of new ones. Based on the TDAC characteristics, we demonstrate the applications in anti-counterfeiting and information encryption. This strategy offers new insights into the development of multicolor afterglow materials.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"151 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c00723\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00723","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Time-Dependent Room-Temperature Afterglow of Carbon Dots Constructed by Trap-Induced Multiemission Centers
Traps, due to the ability to capture, store, and release charge carriers, have attracted significant attention in the construction of long afterglow materials. In this study, a one-step in situ calcination strategy was employed to fabricate carbon dot (CD)-based composites, and the traps were designed as one of the emission centers within the composite system. Upon removal of ultraviolet light, the materials showed a time-dependent afterglow color (TDAC), with the luminescent color gradually changing from orange to green. The study indicates that the dynamic afterglow results from the energy transfer from traps to the surface triplet state of the CDs. In addition, CDs generated during the in situ calcination process serve as dopants, increasing the number of original traps and facilitating the formation of new ones. Based on the TDAC characteristics, we demonstrate the applications in anti-counterfeiting and information encryption. This strategy offers new insights into the development of multicolor afterglow materials.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.