{"title":"探索电场作用下活化能与反应能之间的线性能量关系。","authors":"Supin Zhao,Ke Gong,Zhexuan Song,Giuseppe Cassone,Jing Xie","doi":"10.1021/acs.jctc.5c00225","DOIUrl":null,"url":null,"abstract":"Electric-field (EF)-mediated chemistry has recently garnered increasing attention partly owing to its capability to catalyze a broad range of chemical reactions. How the EF affects the kinetics and thermodynamics of target reactions is a critical question. Herein, both density functional theory (DFT) and MP2 calculations suggest that the change of activation energy ΔΔE‡ and the change of reaction energy ΔΔErxn under an EF display a linear energy relationship (LER) ΔΔE‡ = mΔΔErxn. This has been tested against several reactions such as SN2 and proton transfer reactions, including neutral and charged systems and endothermic and exothermic processes. The linear coefficient m approximates to the ratio of the dipole moment change, i.e., Δμ‡/Δμrxn, of the studied reactions. The LER holds well at EF strengths up to ≈1 V/nm but deviates from the DFT-calculated results at larger EFs. Such deviations are mainly caused by the molecular geometry changes under an EF. Systems with larger polarizability experience greater geometry changes under an EF, thus leading to larger deviations. In addition, we propose that the reaction barrier can be predicted by -Δμ‡F - 0.5Δα‡F2, while it is well approximated by -Δμ‡F for small EF strengths. The proposed LER and the field-dependent barrier estimation promise broad applicability in EF-mediated chemical reactions.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"9 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Linear Energy Relationships between Activation Energy and Reaction Energy under an Electric Field.\",\"authors\":\"Supin Zhao,Ke Gong,Zhexuan Song,Giuseppe Cassone,Jing Xie\",\"doi\":\"10.1021/acs.jctc.5c00225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric-field (EF)-mediated chemistry has recently garnered increasing attention partly owing to its capability to catalyze a broad range of chemical reactions. How the EF affects the kinetics and thermodynamics of target reactions is a critical question. Herein, both density functional theory (DFT) and MP2 calculations suggest that the change of activation energy ΔΔE‡ and the change of reaction energy ΔΔErxn under an EF display a linear energy relationship (LER) ΔΔE‡ = mΔΔErxn. This has been tested against several reactions such as SN2 and proton transfer reactions, including neutral and charged systems and endothermic and exothermic processes. The linear coefficient m approximates to the ratio of the dipole moment change, i.e., Δμ‡/Δμrxn, of the studied reactions. The LER holds well at EF strengths up to ≈1 V/nm but deviates from the DFT-calculated results at larger EFs. Such deviations are mainly caused by the molecular geometry changes under an EF. Systems with larger polarizability experience greater geometry changes under an EF, thus leading to larger deviations. In addition, we propose that the reaction barrier can be predicted by -Δμ‡F - 0.5Δα‡F2, while it is well approximated by -Δμ‡F for small EF strengths. The proposed LER and the field-dependent barrier estimation promise broad applicability in EF-mediated chemical reactions.\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.5c00225\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00225","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Exploring the Linear Energy Relationships between Activation Energy and Reaction Energy under an Electric Field.
Electric-field (EF)-mediated chemistry has recently garnered increasing attention partly owing to its capability to catalyze a broad range of chemical reactions. How the EF affects the kinetics and thermodynamics of target reactions is a critical question. Herein, both density functional theory (DFT) and MP2 calculations suggest that the change of activation energy ΔΔE‡ and the change of reaction energy ΔΔErxn under an EF display a linear energy relationship (LER) ΔΔE‡ = mΔΔErxn. This has been tested against several reactions such as SN2 and proton transfer reactions, including neutral and charged systems and endothermic and exothermic processes. The linear coefficient m approximates to the ratio of the dipole moment change, i.e., Δμ‡/Δμrxn, of the studied reactions. The LER holds well at EF strengths up to ≈1 V/nm but deviates from the DFT-calculated results at larger EFs. Such deviations are mainly caused by the molecular geometry changes under an EF. Systems with larger polarizability experience greater geometry changes under an EF, thus leading to larger deviations. In addition, we propose that the reaction barrier can be predicted by -Δμ‡F - 0.5Δα‡F2, while it is well approximated by -Δμ‡F for small EF strengths. The proposed LER and the field-dependent barrier estimation promise broad applicability in EF-mediated chemical reactions.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.