电能质量数据中非典型谐波模式的检测与表征

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Olga Zyabkina, Max Domagk, Jan Meyer, Peter Schegner, Marco Lindner, Heiko Mayer, Christoph Butterer
{"title":"电能质量数据中非典型谐波模式的检测与表征","authors":"Olga Zyabkina,&nbsp;Max Domagk,&nbsp;Jan Meyer,&nbsp;Peter Schegner,&nbsp;Marco Lindner,&nbsp;Heiko Mayer,&nbsp;Christoph Butterer","doi":"10.1049/gtd2.70062","DOIUrl":null,"url":null,"abstract":"<p>With the proliferation of harmonic sources, network operators face significant challenges in identifying and interpreting sudden changes in harmonic emission behaviour due to the large volume of power quality data and the lack of automated analysis tools. This article introduces a novel algorithm that detects and characterises atypical harmonic emission patterns based on a comprehensive framework that includes data preparation, anomaly detection, and knowledge acquisition stages. By employing context-based features, the underlying data properties of both typical and atypical patterns are captured effectively. Sliding-window thresholds enable a flexible adaption of the algorithm to variations caused by seasonality and trends. In the knowledge acquisition stage, the significance and properties of atypical patterns are summarised using aggregated anomaly scores, significance categories, and a classification scheme. The algorithm's effectiveness is demonstrated through its application to over 5000 harmonic time series collected in the transmission system in Germany.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70062","citationCount":"0","resultStr":"{\"title\":\"Detection and Characterisation of Atypical Harmonic Patterns in Big Power Quality Data\",\"authors\":\"Olga Zyabkina,&nbsp;Max Domagk,&nbsp;Jan Meyer,&nbsp;Peter Schegner,&nbsp;Marco Lindner,&nbsp;Heiko Mayer,&nbsp;Christoph Butterer\",\"doi\":\"10.1049/gtd2.70062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the proliferation of harmonic sources, network operators face significant challenges in identifying and interpreting sudden changes in harmonic emission behaviour due to the large volume of power quality data and the lack of automated analysis tools. This article introduces a novel algorithm that detects and characterises atypical harmonic emission patterns based on a comprehensive framework that includes data preparation, anomaly detection, and knowledge acquisition stages. By employing context-based features, the underlying data properties of both typical and atypical patterns are captured effectively. Sliding-window thresholds enable a flexible adaption of the algorithm to variations caused by seasonality and trends. In the knowledge acquisition stage, the significance and properties of atypical patterns are summarised using aggregated anomaly scores, significance categories, and a classification scheme. The algorithm's effectiveness is demonstrated through its application to over 5000 harmonic time series collected in the transmission system in Germany.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70062\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70062\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70062","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着谐波源的激增,由于大量电能质量数据和缺乏自动化分析工具,网络运营商在识别和解释谐波发射行为的突然变化方面面临着重大挑战。本文介绍了一种新的算法,该算法基于一个综合框架,包括数据准备、异常检测和知识获取阶段,来检测和表征非典型谐波发射模式。通过采用基于上下文的特征,可以有效地捕获典型和非典型模式的底层数据属性。滑动窗口阈值使算法能够灵活地适应季节性和趋势引起的变化。在知识获取阶段,非典型模式的显著性和属性使用聚合异常分数、显著性类别和分类方案进行总结。通过对德国输电系统采集的5000多个谐波时间序列的分析,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Detection and Characterisation of Atypical Harmonic Patterns in Big Power Quality Data

Detection and Characterisation of Atypical Harmonic Patterns in Big Power Quality Data

With the proliferation of harmonic sources, network operators face significant challenges in identifying and interpreting sudden changes in harmonic emission behaviour due to the large volume of power quality data and the lack of automated analysis tools. This article introduces a novel algorithm that detects and characterises atypical harmonic emission patterns based on a comprehensive framework that includes data preparation, anomaly detection, and knowledge acquisition stages. By employing context-based features, the underlying data properties of both typical and atypical patterns are captured effectively. Sliding-window thresholds enable a flexible adaption of the algorithm to variations caused by seasonality and trends. In the knowledge acquisition stage, the significance and properties of atypical patterns are summarised using aggregated anomaly scores, significance categories, and a classification scheme. The algorithm's effectiveness is demonstrated through its application to over 5000 harmonic time series collected in the transmission system in Germany.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信