Marissa Levy, Amanda Peel, Lexie Zhao, Nicholas LaGrassa, Michael S. Horn, Uri Wilensky
{"title":"中学科学教师的概念和修改,以支持公平参与共同设计的计算思维课程","authors":"Marissa Levy, Amanda Peel, Lexie Zhao, Nicholas LaGrassa, Michael S. Horn, Uri Wilensky","doi":"10.1002/tea.21998","DOIUrl":null,"url":null,"abstract":"<p>Increasing access to computational ideas and practices is one important reason to integrate computational thinking (CT) in science classrooms. While integrating CT into science classrooms broadens exposure to computing, it may not be enough to ensure equitable participation in the science classroom. Equitable participation is crucial because providing students with an environment in which they are able to fully engage and participate in science and computing practices empowers students to learn and continue pursuing CT and science. To foreground equitable participation in CT-integrated curricula, we undertook a research project in which researchers and teachers examined teacher conceptualizations of equitable participation and how teachers design for equitable participation by modifying a lesson that introduces computational modeling in science. The following research questions guided the study: (1) What are teachers' conceptualizations of equitable participation? (2) How do teachers design for equitable participation through co-design of a CT-integrated unit? Our findings suggest that teachers conceptualized and designed for equitable participation in the context of a CT-integrated curriculum across three primary dimensions: accessibility, inclusion, and relevancy. Our contributions to the field of science teaching and learning are twofold: (1) obtaining an initial understanding of how teachers think about and design for equitable participation is crucial in order to support teachers in their pursuit of creating equitable learning experiences for CT and science learners, and (2) our findings show that we can study teacher conceptualizations and their design choices by examining specific modifications to a CT-integrated science curriculum. Implications are discussed.</p>","PeriodicalId":48369,"journal":{"name":"Journal of Research in Science Teaching","volume":"62 5","pages":"1167-1201"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/tea.21998","citationCount":"0","resultStr":"{\"title\":\"Secondary science teachers' conceptualizations and modifications to support equitable participation in a co-designed computational thinking lesson\",\"authors\":\"Marissa Levy, Amanda Peel, Lexie Zhao, Nicholas LaGrassa, Michael S. Horn, Uri Wilensky\",\"doi\":\"10.1002/tea.21998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Increasing access to computational ideas and practices is one important reason to integrate computational thinking (CT) in science classrooms. While integrating CT into science classrooms broadens exposure to computing, it may not be enough to ensure equitable participation in the science classroom. Equitable participation is crucial because providing students with an environment in which they are able to fully engage and participate in science and computing practices empowers students to learn and continue pursuing CT and science. To foreground equitable participation in CT-integrated curricula, we undertook a research project in which researchers and teachers examined teacher conceptualizations of equitable participation and how teachers design for equitable participation by modifying a lesson that introduces computational modeling in science. The following research questions guided the study: (1) What are teachers' conceptualizations of equitable participation? (2) How do teachers design for equitable participation through co-design of a CT-integrated unit? Our findings suggest that teachers conceptualized and designed for equitable participation in the context of a CT-integrated curriculum across three primary dimensions: accessibility, inclusion, and relevancy. Our contributions to the field of science teaching and learning are twofold: (1) obtaining an initial understanding of how teachers think about and design for equitable participation is crucial in order to support teachers in their pursuit of creating equitable learning experiences for CT and science learners, and (2) our findings show that we can study teacher conceptualizations and their design choices by examining specific modifications to a CT-integrated science curriculum. Implications are discussed.</p>\",\"PeriodicalId\":48369,\"journal\":{\"name\":\"Journal of Research in Science Teaching\",\"volume\":\"62 5\",\"pages\":\"1167-1201\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/tea.21998\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research in Science Teaching\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tea.21998\",\"RegionNum\":1,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research in Science Teaching","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tea.21998","RegionNum":1,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Secondary science teachers' conceptualizations and modifications to support equitable participation in a co-designed computational thinking lesson
Increasing access to computational ideas and practices is one important reason to integrate computational thinking (CT) in science classrooms. While integrating CT into science classrooms broadens exposure to computing, it may not be enough to ensure equitable participation in the science classroom. Equitable participation is crucial because providing students with an environment in which they are able to fully engage and participate in science and computing practices empowers students to learn and continue pursuing CT and science. To foreground equitable participation in CT-integrated curricula, we undertook a research project in which researchers and teachers examined teacher conceptualizations of equitable participation and how teachers design for equitable participation by modifying a lesson that introduces computational modeling in science. The following research questions guided the study: (1) What are teachers' conceptualizations of equitable participation? (2) How do teachers design for equitable participation through co-design of a CT-integrated unit? Our findings suggest that teachers conceptualized and designed for equitable participation in the context of a CT-integrated curriculum across three primary dimensions: accessibility, inclusion, and relevancy. Our contributions to the field of science teaching and learning are twofold: (1) obtaining an initial understanding of how teachers think about and design for equitable participation is crucial in order to support teachers in their pursuit of creating equitable learning experiences for CT and science learners, and (2) our findings show that we can study teacher conceptualizations and their design choices by examining specific modifications to a CT-integrated science curriculum. Implications are discussed.
期刊介绍:
Journal of Research in Science Teaching, the official journal of NARST: A Worldwide Organization for Improving Science Teaching and Learning Through Research, publishes reports for science education researchers and practitioners on issues of science teaching and learning and science education policy. Scholarly manuscripts within the domain of the Journal of Research in Science Teaching include, but are not limited to, investigations employing qualitative, ethnographic, historical, survey, philosophical, case study research, quantitative, experimental, quasi-experimental, data mining, and data analytics approaches; position papers; policy perspectives; critical reviews of the literature; and comments and criticism.