Michael J. Plantholt, Songling Shan
求助PDF
{"title":"关于多图过满猜想","authors":"Michael J. Plantholt, Songling Shan","doi":"10.1002/jgt.23221","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A subgraph <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math> of a multigraph <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is overfull if <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>∣</mo>\n \n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>></mo>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mrow>\n <mo>⌊</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>/</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌋</mo>\n </mrow>\n \n <mo>.</mo>\n </mrow>\n </mrow>\n </semantics></math> Analogous to the Overfull Conjecture proposed by Chetwynd and Hilton in 1986, Stiebitz et al. formed the multigraph version of the conjecture as follows: Let <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> be a multigraph with maximum multiplicity <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math> and maximum degree <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>Δ</mi>\n \n <mo>></mo>\n \n <mfrac>\n <mn>1</mn>\n \n <mn>3</mn>\n </mfrac>\n \n <mi>r</mi>\n \n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n </semantics></math>. Then <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> has chromatic index <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> if and only if <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> contains no overfull subgraph. In this paper, we prove the following three results toward the Multigraph Overfull Conjecture for sufficiently large and even <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n </semantics></math>. (1) If <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-regular with <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>/</mo>\n \n <mn>2</mn>\n \n <mo>+</mo>\n \n <mn>18</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> has a 1-factorization. This result also settles a conjecture of the first author and Tipnis from 2001 up to a constant error in the lower bound of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>. (2) If <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> contains an overfull subgraph and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>/</mo>\n \n <mn>2</mn>\n \n <mo>+</mo>\n \n <mn>18</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msup>\n <mi>χ</mi>\n \n <mo>′</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mrow>\n <mo>⌈</mo>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>f</mi>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>f</mi>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> is the fractional chromatic index of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>. (3) If the minimum degree of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is at least <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mi>ε</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>r</mi>\n \n <mi>n</mi>\n \n <mo>/</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> for any <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mn>0</mn>\n \n <mo><</mo>\n \n <mi>ε</mi>\n \n <mo><</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> contains no overfull subgraph, then <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msup>\n <mi>χ</mi>\n \n <mo>′</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. The proof is based on the decomposition of multigraphs into simple graphs and we prove a slightly weaker version of a conjecture due to the first author and Tipnis from 1991 on decomposing a multigraph into constrained simple graphs. The result is also of independent interest.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 2","pages":"226-236"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Multigraph Overfull Conjecture\",\"authors\":\"Michael J. Plantholt, Songling Shan\",\"doi\":\"10.1002/jgt.23221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A subgraph <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> of a multigraph <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is overfull if <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>E</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n \\n <mo>></mo>\\n \\n <mi>Δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mrow>\\n <mo>⌊</mo>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n \\n <mo>/</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n \\n <mo>⌋</mo>\\n </mrow>\\n \\n <mo>.</mo>\\n </mrow>\\n </mrow>\\n </semantics></math> Analogous to the Overfull Conjecture proposed by Chetwynd and Hilton in 1986, Stiebitz et al. formed the multigraph version of the conjecture as follows: Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> be a multigraph with maximum multiplicity <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and maximum degree <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>Δ</mi>\\n \\n <mo>></mo>\\n \\n <mfrac>\\n <mn>1</mn>\\n \\n <mn>3</mn>\\n </mfrac>\\n \\n <mi>r</mi>\\n \\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n </mrow>\\n </mrow>\\n </semantics></math>. Then <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> has chromatic index <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>Δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> contains no overfull subgraph. In this paper, we prove the following three results toward the Multigraph Overfull Conjecture for sufficiently large and even <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>=</mo>\\n \\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n </mrow>\\n </mrow>\\n </semantics></math>. (1) If <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-regular with <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mi>r</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>/</mo>\\n \\n <mn>2</mn>\\n \\n <mo>+</mo>\\n \\n <mn>18</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> has a 1-factorization. This result also settles a conjecture of the first author and Tipnis from 2001 up to a constant error in the lower bound of <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. (2) If <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> contains an overfull subgraph and <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mi>r</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>/</mo>\\n \\n <mn>2</mn>\\n \\n <mo>+</mo>\\n \\n <mn>18</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msup>\\n <mi>χ</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>⌈</mo>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>f</mi>\\n \\n <mo>′</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>⌉</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>f</mi>\\n \\n <mo>′</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> is the fractional chromatic index of <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. (3) If the minimum degree of <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>+</mo>\\n \\n <mi>ε</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>r</mi>\\n \\n <mi>n</mi>\\n \\n <mo>/</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> for any <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mn>0</mn>\\n \\n <mo><</mo>\\n \\n <mi>ε</mi>\\n \\n <mo><</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> contains no overfull subgraph, then <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msup>\\n <mi>χ</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>Δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. The proof is based on the decomposition of multigraphs into simple graphs and we prove a slightly weaker version of a conjecture due to the first author and Tipnis from 1991 on decomposing a multigraph into constrained simple graphs. The result is also of independent interest.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 2\",\"pages\":\"226-236\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23221\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23221","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用