关于多图过满猜想

IF 0.9 3区 数学 Q2 MATHEMATICS
Michael J. Plantholt, Songling Shan
{"title":"关于多图过满猜想","authors":"Michael J. Plantholt,&nbsp;Songling Shan","doi":"10.1002/jgt.23221","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A subgraph <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math> of a multigraph <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is overfull if <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>∣</mo>\n \n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>&gt;</mo>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mrow>\n <mo>⌊</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>/</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌋</mo>\n </mrow>\n \n <mo>.</mo>\n </mrow>\n </mrow>\n </semantics></math> Analogous to the Overfull Conjecture proposed by Chetwynd and Hilton in 1986, Stiebitz et al. formed the multigraph version of the conjecture as follows: Let <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> be a multigraph with maximum multiplicity <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math> and maximum degree <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>Δ</mi>\n \n <mo>&gt;</mo>\n \n <mfrac>\n <mn>1</mn>\n \n <mn>3</mn>\n </mfrac>\n \n <mi>r</mi>\n \n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n </semantics></math>. Then <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> has chromatic index <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> if and only if <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> contains no overfull subgraph. In this paper, we prove the following three results toward the Multigraph Overfull Conjecture for sufficiently large and even <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n </semantics></math>. (1) If <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-regular with <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>/</mo>\n \n <mn>2</mn>\n \n <mo>+</mo>\n \n <mn>18</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> has a 1-factorization. This result also settles a conjecture of the first author and Tipnis from 2001 up to a constant error in the lower bound of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>. (2) If <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> contains an overfull subgraph and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>/</mo>\n \n <mn>2</mn>\n \n <mo>+</mo>\n \n <mn>18</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msup>\n <mi>χ</mi>\n \n <mo>′</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mrow>\n <mo>⌈</mo>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>f</mi>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>f</mi>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> is the fractional chromatic index of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>. (3) If the minimum degree of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is at least <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mi>ε</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>r</mi>\n \n <mi>n</mi>\n \n <mo>/</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> for any <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mn>0</mn>\n \n <mo>&lt;</mo>\n \n <mi>ε</mi>\n \n <mo>&lt;</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> contains no overfull subgraph, then <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msup>\n <mi>χ</mi>\n \n <mo>′</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. The proof is based on the decomposition of multigraphs into simple graphs and we prove a slightly weaker version of a conjecture due to the first author and Tipnis from 1991 on decomposing a multigraph into constrained simple graphs. The result is also of independent interest.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 2","pages":"226-236"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Multigraph Overfull Conjecture\",\"authors\":\"Michael J. Plantholt,&nbsp;Songling Shan\",\"doi\":\"10.1002/jgt.23221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A subgraph <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> of a multigraph <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is overfull if <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>E</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n \\n <mo>&gt;</mo>\\n \\n <mi>Δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mrow>\\n <mo>⌊</mo>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n \\n <mo>/</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n \\n <mo>⌋</mo>\\n </mrow>\\n \\n <mo>.</mo>\\n </mrow>\\n </mrow>\\n </semantics></math> Analogous to the Overfull Conjecture proposed by Chetwynd and Hilton in 1986, Stiebitz et al. formed the multigraph version of the conjecture as follows: Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> be a multigraph with maximum multiplicity <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and maximum degree <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>Δ</mi>\\n \\n <mo>&gt;</mo>\\n \\n <mfrac>\\n <mn>1</mn>\\n \\n <mn>3</mn>\\n </mfrac>\\n \\n <mi>r</mi>\\n \\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n </mrow>\\n </mrow>\\n </semantics></math>. Then <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> has chromatic index <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>Δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> contains no overfull subgraph. In this paper, we prove the following three results toward the Multigraph Overfull Conjecture for sufficiently large and even <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>=</mo>\\n \\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n </mrow>\\n </mrow>\\n </semantics></math>. (1) If <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-regular with <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mi>r</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>/</mo>\\n \\n <mn>2</mn>\\n \\n <mo>+</mo>\\n \\n <mn>18</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> has a 1-factorization. This result also settles a conjecture of the first author and Tipnis from 2001 up to a constant error in the lower bound of <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. (2) If <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> contains an overfull subgraph and <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mi>r</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>/</mo>\\n \\n <mn>2</mn>\\n \\n <mo>+</mo>\\n \\n <mn>18</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msup>\\n <mi>χ</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>⌈</mo>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>f</mi>\\n \\n <mo>′</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>⌉</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>f</mi>\\n \\n <mo>′</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> is the fractional chromatic index of <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. (3) If the minimum degree of <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>+</mo>\\n \\n <mi>ε</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>r</mi>\\n \\n <mi>n</mi>\\n \\n <mo>/</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> for any <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mn>0</mn>\\n \\n <mo>&lt;</mo>\\n \\n <mi>ε</mi>\\n \\n <mo>&lt;</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> contains no overfull subgraph, then <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msup>\\n <mi>χ</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>Δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. The proof is based on the decomposition of multigraphs into simple graphs and we prove a slightly weaker version of a conjecture due to the first author and Tipnis from 1991 on decomposing a multigraph into constrained simple graphs. The result is also of independent interest.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 2\",\"pages\":\"226-236\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23221\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23221","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

多图G的子图H如果∣E (H)是满的)∣&gt;Δ (g)⌊∣v (H)∣/ 2⌋。与Chetwynd和Hilton于1986年提出的Overfull猜想类似,Stiebitz等人形成了该猜想的多图版本如下:设G是一个多重图,具有最大多重性r和最大次Δ &gt;13r∣V (G)∣。那么G有色指数Δ (G)当且仅当G不包含过满子图。在本文中,我们证明了对于足够大且偶数n的多图过满猜想的以下三个结果:其中n =∣V (G)∣。 (1)若G为k正则且k≥r (N / 2 + 18),那么G有一个1分解。这个结果也解决了第一作者和Tipnis从2001年开始的一个猜想,即在k的下界有一个常数误差。(2)若G包含过满子图且δ (G)≥r(n / 2 + 18),则χ ' (G) =≤0χ f ' (G)⌉ ,其中χ f ' (G)为?的分数色指数G . (3)若G的最小度至少为(1 + ε)) r n / 2对于任意0 &lt;ε & lt;1和G不包含过满子图,则χ ' (G) = Δ(g)。这个证明是基于多图分解成简单图的,我们证明了一个猜想的一个稍微弱一点的版本,这个猜想是由第一作者和Tipnis从1991年开始将多图分解成有约束的简单图。这一结果也引起了人们的独立兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Multigraph Overfull Conjecture

A subgraph H of a multigraph G is overfull if E ( H ) > Δ ( G ) V ( H ) / 2 . Analogous to the Overfull Conjecture proposed by Chetwynd and Hilton in 1986, Stiebitz et al. formed the multigraph version of the conjecture as follows: Let G be a multigraph with maximum multiplicity r and maximum degree Δ > 1 3 r V ( G ) . Then G has chromatic index Δ ( G ) if and only if G contains no overfull subgraph. In this paper, we prove the following three results toward the Multigraph Overfull Conjecture for sufficiently large and even n , where n = V ( G ) . (1) If G is k -regular with k r ( n / 2 + 18 ) , then G has a 1-factorization. This result also settles a conjecture of the first author and Tipnis from 2001 up to a constant error in the lower bound of k . (2) If G contains an overfull subgraph and δ ( G ) r ( n / 2 + 18 ) , then χ ( G ) = χ f ( G ) , where χ f ( G ) is the fractional chromatic index of G . (3) If the minimum degree of G is at least ( 1 + ε ) r n / 2 for any 0 < ε < 1 and G contains no overfull subgraph, then χ ( G ) = Δ ( G ) . The proof is based on the decomposition of multigraphs into simple graphs and we prove a slightly weaker version of a conjecture due to the first author and Tipnis from 1991 on decomposing a multigraph into constrained simple graphs. The result is also of independent interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信