radon型反问题的增广全变分正则化

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Nicholas E. Protonotarios, Nikolaos Dikaios, Dimosthenis Kaponis, Antonios Charalambopoulos
{"title":"radon型反问题的增广全变分正则化","authors":"Nicholas E. Protonotarios,&nbsp;Nikolaos Dikaios,&nbsp;Dimosthenis Kaponis,&nbsp;Antonios Charalambopoulos","doi":"10.1111/sapm.70053","DOIUrl":null,"url":null,"abstract":"<p>We introduce the augmented total variation (<span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mi>V</mi>\n </mrow>\n <annotation>$TV$</annotation>\n </semantics></math>) regularization method for Radon-type inverse problems. Our novel approach incorporates a dual variable into the regularization process, thereby extending and essentially augmenting traditional <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mi>V</mi>\n </mrow>\n <annotation>$TV$</annotation>\n </semantics></math> regularization techniques. The proposed method is robust, requiring only one algorithmic iteration to achieve accurate reconstructions. Numerical experiments on a modified Shepp–Logan phantom demonstrate that the augmented <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mi>V</mi>\n </mrow>\n <annotation>$TV$</annotation>\n </semantics></math> regularization consistently yields higher structural similarity index metric (SSIM) values and lower mean absolute difference (MAD) values compared to filtered backprojection and standard <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mi>V</mi>\n </mrow>\n <annotation>$TV$</annotation>\n </semantics></math> regularization. These findings indicate that our method not only reduces reconstruction errors but also preserves structural details.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70053","citationCount":"0","resultStr":"{\"title\":\"Augmented Total Variation Regularization in Radon-Type Inverse Problems\",\"authors\":\"Nicholas E. Protonotarios,&nbsp;Nikolaos Dikaios,&nbsp;Dimosthenis Kaponis,&nbsp;Antonios Charalambopoulos\",\"doi\":\"10.1111/sapm.70053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce the augmented total variation (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mi>V</mi>\\n </mrow>\\n <annotation>$TV$</annotation>\\n </semantics></math>) regularization method for Radon-type inverse problems. Our novel approach incorporates a dual variable into the regularization process, thereby extending and essentially augmenting traditional <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mi>V</mi>\\n </mrow>\\n <annotation>$TV$</annotation>\\n </semantics></math> regularization techniques. The proposed method is robust, requiring only one algorithmic iteration to achieve accurate reconstructions. Numerical experiments on a modified Shepp–Logan phantom demonstrate that the augmented <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mi>V</mi>\\n </mrow>\\n <annotation>$TV$</annotation>\\n </semantics></math> regularization consistently yields higher structural similarity index metric (SSIM) values and lower mean absolute difference (MAD) values compared to filtered backprojection and standard <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mi>V</mi>\\n </mrow>\\n <annotation>$TV$</annotation>\\n </semantics></math> regularization. These findings indicate that our method not only reduces reconstruction errors but also preserves structural details.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"154 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70053\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70053\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70053","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

介绍了radon型反问题的增广总变分(TV$ TV$)正则化方法。我们的新方法将双变量纳入正则化过程,从而扩展并本质上增强了传统的TV TV正则化技术。该方法具有鲁棒性,只需一次算法迭代即可实现精确的重建。在改进的Shepp-Logan模型上进行的数值实验表明,与滤波后的反投影和标准TV相比,增强的TV$ TV$正则化始终产生更高的结构相似指数度量(SSIM)值和更低的平均绝对差(MAD)值美元的电视 $ 正则化。这些发现表明,我们的方法不仅减少了重建误差,而且保留了结构细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Augmented Total Variation Regularization in Radon-Type Inverse Problems

Augmented Total Variation Regularization in Radon-Type Inverse Problems

We introduce the augmented total variation ( T V $TV$ ) regularization method for Radon-type inverse problems. Our novel approach incorporates a dual variable into the regularization process, thereby extending and essentially augmenting traditional T V $TV$ regularization techniques. The proposed method is robust, requiring only one algorithmic iteration to achieve accurate reconstructions. Numerical experiments on a modified Shepp–Logan phantom demonstrate that the augmented T V $TV$ regularization consistently yields higher structural similarity index metric (SSIM) values and lower mean absolute difference (MAD) values compared to filtered backprojection and standard T V $TV$ regularization. These findings indicate that our method not only reduces reconstruction errors but also preserves structural details.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信