Nicholas E. Protonotarios, Nikolaos Dikaios, Dimosthenis Kaponis, Antonios Charalambopoulos
{"title":"radon型反问题的增广全变分正则化","authors":"Nicholas E. Protonotarios, Nikolaos Dikaios, Dimosthenis Kaponis, Antonios Charalambopoulos","doi":"10.1111/sapm.70053","DOIUrl":null,"url":null,"abstract":"<p>We introduce the augmented total variation (<span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mi>V</mi>\n </mrow>\n <annotation>$TV$</annotation>\n </semantics></math>) regularization method for Radon-type inverse problems. Our novel approach incorporates a dual variable into the regularization process, thereby extending and essentially augmenting traditional <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mi>V</mi>\n </mrow>\n <annotation>$TV$</annotation>\n </semantics></math> regularization techniques. The proposed method is robust, requiring only one algorithmic iteration to achieve accurate reconstructions. Numerical experiments on a modified Shepp–Logan phantom demonstrate that the augmented <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mi>V</mi>\n </mrow>\n <annotation>$TV$</annotation>\n </semantics></math> regularization consistently yields higher structural similarity index metric (SSIM) values and lower mean absolute difference (MAD) values compared to filtered backprojection and standard <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mi>V</mi>\n </mrow>\n <annotation>$TV$</annotation>\n </semantics></math> regularization. These findings indicate that our method not only reduces reconstruction errors but also preserves structural details.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70053","citationCount":"0","resultStr":"{\"title\":\"Augmented Total Variation Regularization in Radon-Type Inverse Problems\",\"authors\":\"Nicholas E. Protonotarios, Nikolaos Dikaios, Dimosthenis Kaponis, Antonios Charalambopoulos\",\"doi\":\"10.1111/sapm.70053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce the augmented total variation (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mi>V</mi>\\n </mrow>\\n <annotation>$TV$</annotation>\\n </semantics></math>) regularization method for Radon-type inverse problems. Our novel approach incorporates a dual variable into the regularization process, thereby extending and essentially augmenting traditional <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mi>V</mi>\\n </mrow>\\n <annotation>$TV$</annotation>\\n </semantics></math> regularization techniques. The proposed method is robust, requiring only one algorithmic iteration to achieve accurate reconstructions. Numerical experiments on a modified Shepp–Logan phantom demonstrate that the augmented <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mi>V</mi>\\n </mrow>\\n <annotation>$TV$</annotation>\\n </semantics></math> regularization consistently yields higher structural similarity index metric (SSIM) values and lower mean absolute difference (MAD) values compared to filtered backprojection and standard <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mi>V</mi>\\n </mrow>\\n <annotation>$TV$</annotation>\\n </semantics></math> regularization. These findings indicate that our method not only reduces reconstruction errors but also preserves structural details.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"154 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70053\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70053\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70053","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Augmented Total Variation Regularization in Radon-Type Inverse Problems
We introduce the augmented total variation () regularization method for Radon-type inverse problems. Our novel approach incorporates a dual variable into the regularization process, thereby extending and essentially augmenting traditional regularization techniques. The proposed method is robust, requiring only one algorithmic iteration to achieve accurate reconstructions. Numerical experiments on a modified Shepp–Logan phantom demonstrate that the augmented regularization consistently yields higher structural similarity index metric (SSIM) values and lower mean absolute difference (MAD) values compared to filtered backprojection and standard regularization. These findings indicate that our method not only reduces reconstruction errors but also preserves structural details.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.