自适应量子核主成分分析在化学电阻传感器阵列中的应用(ei)

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zeheng Wang, Timothy van der Laan, Muhammad Usman
{"title":"自适应量子核主成分分析在化学电阻传感器阵列中的应用(ei)","authors":"Zeheng Wang,&nbsp;Timothy van der Laan,&nbsp;Muhammad Usman","doi":"10.1002/advs.202570102","DOIUrl":null,"url":null,"abstract":"<p><b>Quantum Machine Learning</b></p><p>In article number 2411573, Zeheng Wang, Timothy van der Laan, and Muhammad Usman introduce a quantum algorithm-driven framework to compress chemiresistive sensor data. By employing a self-adaptive quantum kernel (SAQK), classical data are mapped into a quantum state space, where quantum principal component analysis (qPCA) is used to achieve significant dimensionality reduction. This innovative method not only minimizes information loss but also improves the subsequent AI-driven readout accuracy. The work highlights the synergy of quantum algorithms and AI, paving the way for efficient IoT data handling on noisy intermediate-scale quantum (NISQ) devices.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 15","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202570102","citationCount":"0","resultStr":"{\"title\":\"Self-Adaptive Quantum Kernel Principal Component Analysis for Compact Readout of Chemiresistive Sensor Arrays (Adv. Sci. 15/2025)\",\"authors\":\"Zeheng Wang,&nbsp;Timothy van der Laan,&nbsp;Muhammad Usman\",\"doi\":\"10.1002/advs.202570102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Quantum Machine Learning</b></p><p>In article number 2411573, Zeheng Wang, Timothy van der Laan, and Muhammad Usman introduce a quantum algorithm-driven framework to compress chemiresistive sensor data. By employing a self-adaptive quantum kernel (SAQK), classical data are mapped into a quantum state space, where quantum principal component analysis (qPCA) is used to achieve significant dimensionality reduction. This innovative method not only minimizes information loss but also improves the subsequent AI-driven readout accuracy. The work highlights the synergy of quantum algorithms and AI, paving the way for efficient IoT data handling on noisy intermediate-scale quantum (NISQ) devices.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 15\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202570102\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/advs.202570102\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202570102","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子机器学习在2411573号文章中,王泽恒、Timothy van der Laan和Muhammad Usman介绍了一个量子算法驱动的框架来压缩化学电阻传感器数据。通过采用自适应量子核(SAQK),将经典数据映射到量子态空间,在量子态空间中使用量子主成分分析(qPCA)实现显著的降维。这种创新的方法不仅最大限度地减少了信息丢失,而且提高了随后人工智能驱动的读出精度。这项工作强调了量子算法和人工智能的协同作用,为在嘈杂的中等规模量子(NISQ)设备上高效处理物联网数据铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-Adaptive Quantum Kernel Principal Component Analysis for Compact Readout of Chemiresistive Sensor Arrays (Adv. Sci. 15/2025)

Self-Adaptive Quantum Kernel Principal Component Analysis for Compact Readout of Chemiresistive Sensor Arrays (Adv. Sci. 15/2025)

Quantum Machine Learning

In article number 2411573, Zeheng Wang, Timothy van der Laan, and Muhammad Usman introduce a quantum algorithm-driven framework to compress chemiresistive sensor data. By employing a self-adaptive quantum kernel (SAQK), classical data are mapped into a quantum state space, where quantum principal component analysis (qPCA) is used to achieve significant dimensionality reduction. This innovative method not only minimizes information loss but also improves the subsequent AI-driven readout accuracy. The work highlights the synergy of quantum algorithms and AI, paving the way for efficient IoT data handling on noisy intermediate-scale quantum (NISQ) devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信