{"title":"粗颗粒气溶胶的增加减轻了欧洲人为细颗粒减少的变暖效应","authors":"Chen Cui, Pengfei Tian, Wenfang Wang, Zeren Yu, Binrui Wang, Chenguang Tang, Xianjie Cao, Jiening Liang, Lei Zhang","doi":"10.1029/2025EF006044","DOIUrl":null,"url":null,"abstract":"<p>Recent decades have seen substantial variations in the physicochemical characteristics of atmospheric aerosols with expected continued changes in the future. While sustained global emission controls have yielded significant environmental benefits, the associated climate penalty from complex radiative effects has induced additional warming, raising public concern. Our study reveals that increased coarse particles enhance fine particle coagulation, contributing to higher coarse particle levels and a reduction in coarse particle peak size, thereby scattering more solar radiation and mitigating the warming from reduced fine particles in Europe. From 1999 to 2021, changes in coarse particles offset 24.6% (26.3%) of the reduced cooling effect at the top (ground) of atmosphere from fine particle reductions. Our findings highlight the complex but significant role of aerosol size changes in influencing solar radiation budget, offering potential relief for global warming concerns and bolstering emissions reduction efforts, with important global and European implications amid ongoing and expected anthropogenic emission cuts.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"13 4","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025EF006044","citationCount":"0","resultStr":"{\"title\":\"Increasing Coarse Aerosols Mitigated the Warming Effect of Anthropogenic Fine Particle Reductions in Europe\",\"authors\":\"Chen Cui, Pengfei Tian, Wenfang Wang, Zeren Yu, Binrui Wang, Chenguang Tang, Xianjie Cao, Jiening Liang, Lei Zhang\",\"doi\":\"10.1029/2025EF006044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent decades have seen substantial variations in the physicochemical characteristics of atmospheric aerosols with expected continued changes in the future. While sustained global emission controls have yielded significant environmental benefits, the associated climate penalty from complex radiative effects has induced additional warming, raising public concern. Our study reveals that increased coarse particles enhance fine particle coagulation, contributing to higher coarse particle levels and a reduction in coarse particle peak size, thereby scattering more solar radiation and mitigating the warming from reduced fine particles in Europe. From 1999 to 2021, changes in coarse particles offset 24.6% (26.3%) of the reduced cooling effect at the top (ground) of atmosphere from fine particle reductions. Our findings highlight the complex but significant role of aerosol size changes in influencing solar radiation budget, offering potential relief for global warming concerns and bolstering emissions reduction efforts, with important global and European implications amid ongoing and expected anthropogenic emission cuts.</p>\",\"PeriodicalId\":48748,\"journal\":{\"name\":\"Earths Future\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025EF006044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earths Future\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025EF006044\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025EF006044","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Increasing Coarse Aerosols Mitigated the Warming Effect of Anthropogenic Fine Particle Reductions in Europe
Recent decades have seen substantial variations in the physicochemical characteristics of atmospheric aerosols with expected continued changes in the future. While sustained global emission controls have yielded significant environmental benefits, the associated climate penalty from complex radiative effects has induced additional warming, raising public concern. Our study reveals that increased coarse particles enhance fine particle coagulation, contributing to higher coarse particle levels and a reduction in coarse particle peak size, thereby scattering more solar radiation and mitigating the warming from reduced fine particles in Europe. From 1999 to 2021, changes in coarse particles offset 24.6% (26.3%) of the reduced cooling effect at the top (ground) of atmosphere from fine particle reductions. Our findings highlight the complex but significant role of aerosol size changes in influencing solar radiation budget, offering potential relief for global warming concerns and bolstering emissions reduction efforts, with important global and European implications amid ongoing and expected anthropogenic emission cuts.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.