Damien C. Boorman, Simran K. Rehal, Maryam Fazili, Loren J. Martin
{"title":"吗啡和μ-阿片受体表达在小鼠镇痛和高运动作用中的性别和应变差异","authors":"Damien C. Boorman, Simran K. Rehal, Maryam Fazili, Loren J. Martin","doi":"10.1002/jnr.70039","DOIUrl":null,"url":null,"abstract":"<p>Sex and gender differences in the analgesic efficacy and side effects of opioids have been widely reported, but their underlying neurobiological mechanisms remain poorly understood. Preclinical animal models are essential tools for investigating these differences and providing insights into the neurobiology of opioid effects. Although studies in rats have revealed sex-specific effects of opioids, the sex-dependent behavioral profiles of opioids in mice, particularly across strains, remain largely unexplored. In this study, we characterized sex and strain differences in the antinociceptive and hyperlocomotor effects of morphine in the two most widely used mouse strains—CD1 and C57BL/6—and quantified regional expression of the μ-opioid receptor (MOR) in key brain and spinal cord regions. Both strains exhibited clear, dose-dependent antinociceptive and hyperlocomotor responses to morphine. While no significant sex or strain differences were observed in antinociceptive effects, C57BL/6 mice displayed significantly greater hyperlocomotor activity than CD1 mice. Western blot analyses revealed strain-specific MOR expression, with CD1 mice showing higher spinal cord and periaqueductal gray MOR levels, particularly in females, while C57BL/6 mice exhibited elevated MOR expression in the caudoputamen. Morphine treatment increased spinal MOR expression in CD1 mice but not C57BL/6, suggesting strain-dependent regulation of MOR. These findings highlight strain-specific behavioral and molecular responses to morphine, emphasizing the importance of strain and sex considerations in preclinical opioid research.</p>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"103 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jnr.70039","citationCount":"0","resultStr":"{\"title\":\"Sex and Strain Differences in Analgesic and Hyperlocomotor Effects of Morphine and μ-Opioid Receptor Expression in Mice\",\"authors\":\"Damien C. Boorman, Simran K. Rehal, Maryam Fazili, Loren J. Martin\",\"doi\":\"10.1002/jnr.70039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sex and gender differences in the analgesic efficacy and side effects of opioids have been widely reported, but their underlying neurobiological mechanisms remain poorly understood. Preclinical animal models are essential tools for investigating these differences and providing insights into the neurobiology of opioid effects. Although studies in rats have revealed sex-specific effects of opioids, the sex-dependent behavioral profiles of opioids in mice, particularly across strains, remain largely unexplored. In this study, we characterized sex and strain differences in the antinociceptive and hyperlocomotor effects of morphine in the two most widely used mouse strains—CD1 and C57BL/6—and quantified regional expression of the μ-opioid receptor (MOR) in key brain and spinal cord regions. Both strains exhibited clear, dose-dependent antinociceptive and hyperlocomotor responses to morphine. While no significant sex or strain differences were observed in antinociceptive effects, C57BL/6 mice displayed significantly greater hyperlocomotor activity than CD1 mice. Western blot analyses revealed strain-specific MOR expression, with CD1 mice showing higher spinal cord and periaqueductal gray MOR levels, particularly in females, while C57BL/6 mice exhibited elevated MOR expression in the caudoputamen. Morphine treatment increased spinal MOR expression in CD1 mice but not C57BL/6, suggesting strain-dependent regulation of MOR. These findings highlight strain-specific behavioral and molecular responses to morphine, emphasizing the importance of strain and sex considerations in preclinical opioid research.</p>\",\"PeriodicalId\":16490,\"journal\":{\"name\":\"Journal of Neuroscience Research\",\"volume\":\"103 4\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jnr.70039\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jnr.70039\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnr.70039","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Sex and Strain Differences in Analgesic and Hyperlocomotor Effects of Morphine and μ-Opioid Receptor Expression in Mice
Sex and gender differences in the analgesic efficacy and side effects of opioids have been widely reported, but their underlying neurobiological mechanisms remain poorly understood. Preclinical animal models are essential tools for investigating these differences and providing insights into the neurobiology of opioid effects. Although studies in rats have revealed sex-specific effects of opioids, the sex-dependent behavioral profiles of opioids in mice, particularly across strains, remain largely unexplored. In this study, we characterized sex and strain differences in the antinociceptive and hyperlocomotor effects of morphine in the two most widely used mouse strains—CD1 and C57BL/6—and quantified regional expression of the μ-opioid receptor (MOR) in key brain and spinal cord regions. Both strains exhibited clear, dose-dependent antinociceptive and hyperlocomotor responses to morphine. While no significant sex or strain differences were observed in antinociceptive effects, C57BL/6 mice displayed significantly greater hyperlocomotor activity than CD1 mice. Western blot analyses revealed strain-specific MOR expression, with CD1 mice showing higher spinal cord and periaqueductal gray MOR levels, particularly in females, while C57BL/6 mice exhibited elevated MOR expression in the caudoputamen. Morphine treatment increased spinal MOR expression in CD1 mice but not C57BL/6, suggesting strain-dependent regulation of MOR. These findings highlight strain-specific behavioral and molecular responses to morphine, emphasizing the importance of strain and sex considerations in preclinical opioid research.
期刊介绍:
The Journal of Neuroscience Research (JNR) publishes novel research results that will advance our understanding of the development, function and pathophysiology of the nervous system, using molecular, cellular, systems, and translational approaches. JNR covers both basic research and clinical aspects of neurology, neuropathology, psychiatry or psychology.
The journal focuses on uncovering the intricacies of brain structure and function. Research published in JNR covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of the nervous system, with emphasis on how disease modifies the function and organization.