利用藤树序列研究参考蒸散量的概率行为

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES
Aliheidar Nasrolahi, Mohammad Nazeri Tahroudi, Yaser Sabzevari
{"title":"利用藤树序列研究参考蒸散量的概率行为","authors":"Aliheidar Nasrolahi,&nbsp;Mohammad Nazeri Tahroudi,&nbsp;Yaser Sabzevari","doi":"10.1007/s13201-025-02429-x","DOIUrl":null,"url":null,"abstract":"<div><p>Reference evapotranspiration, which includes the contribution of climatic conditions in potential evapotranspiration, is considered as an important and strategic criterion in water resources management and irrigation designs. Therefore, it is necessary to determine and predict its changes in each region. In this study, using copula functions, the behavior and changes of this component were investigated in the west of Iran. For this purpose, the meteorological information of nine synoptic stations including Tmax, Tmin, WS, Rs, RHmax, and RHmin were used. This research aims to explore multivariate simulation based on vine tree sequences. Among these parameters, wind speed had the least effect on ET<sub>0</sub>, and in all the studied stations, there was the highest correlation between ET<sub>0</sub>-Tmax pair variable, which was equal to 0.90, 0.87, 0.89, 0.88, 0.86, 0.85, 0.88, and 0.81 in Aligudarz, Azna, Borujerd, Dorud, Khorramabad, Kuhdasht, Nurabad, and Poldakhter stations, respectively, based on Kendall's Tau statistics. The tree sequence of vine copulas including C-, D-, and R-vine was examined according to the input variables based on AIC and logarithm of likelihood evaluation criteria. According to the results, it was found that based on the evaluation criteria, the D-vine tree sequence has the best performance in the joint probability analysis of the studied variables. In addition, the results showed that the D-vine tree sequence, unlike the two R and C type sequences, has maintained the correlation between the studied pair variables until the last tree. The results of this study showed that copula functions could analyze evapotranspiration in different climates with high capability, which can be used in predicting the behavior of non-linear variables.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 5","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-025-02429-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigating the probabilistic behavior of reference evapotranspiration using Vine tree sequence\",\"authors\":\"Aliheidar Nasrolahi,&nbsp;Mohammad Nazeri Tahroudi,&nbsp;Yaser Sabzevari\",\"doi\":\"10.1007/s13201-025-02429-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reference evapotranspiration, which includes the contribution of climatic conditions in potential evapotranspiration, is considered as an important and strategic criterion in water resources management and irrigation designs. Therefore, it is necessary to determine and predict its changes in each region. In this study, using copula functions, the behavior and changes of this component were investigated in the west of Iran. For this purpose, the meteorological information of nine synoptic stations including Tmax, Tmin, WS, Rs, RHmax, and RHmin were used. This research aims to explore multivariate simulation based on vine tree sequences. Among these parameters, wind speed had the least effect on ET<sub>0</sub>, and in all the studied stations, there was the highest correlation between ET<sub>0</sub>-Tmax pair variable, which was equal to 0.90, 0.87, 0.89, 0.88, 0.86, 0.85, 0.88, and 0.81 in Aligudarz, Azna, Borujerd, Dorud, Khorramabad, Kuhdasht, Nurabad, and Poldakhter stations, respectively, based on Kendall's Tau statistics. The tree sequence of vine copulas including C-, D-, and R-vine was examined according to the input variables based on AIC and logarithm of likelihood evaluation criteria. According to the results, it was found that based on the evaluation criteria, the D-vine tree sequence has the best performance in the joint probability analysis of the studied variables. In addition, the results showed that the D-vine tree sequence, unlike the two R and C type sequences, has maintained the correlation between the studied pair variables until the last tree. The results of this study showed that copula functions could analyze evapotranspiration in different climates with high capability, which can be used in predicting the behavior of non-linear variables.</p></div>\",\"PeriodicalId\":8374,\"journal\":{\"name\":\"Applied Water Science\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13201-025-02429-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Water Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13201-025-02429-x\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-025-02429-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

参考蒸散量,包括气候条件对潜在蒸散量的贡献,被认为是水资源管理和灌溉设计的重要和战略标准。因此,有必要确定和预测其在每个区域的变化。在本研究中,使用copula函数,研究了该成分在伊朗西部的行为和变化。为此,使用了Tmax、Tmin、WS、Rs、RHmax和RHmin 9个天气站的气象信息。本研究旨在探索基于藤树序列的多变量模拟。其中风速对ET0的影响最小,在所有站点中,Aligudarz、Azna、Borujerd、Dorud、Khorramabad、Kuhdasht、Nurabad和Poldakhter站点的ET0- tmax对变量的相关系数最高,分别为0.90、0.87、0.89、0.88、0.86、0.85、0.88和0.81。基于AIC和对数似然评价准则,根据输入变量对C-、D-和R-vine的树序列进行检验。结果表明,根据评价准则,D-vine树序列在研究变量的联合概率分析中表现最好。此外,研究结果表明,与R和C两种类型序列不同,D-vine树序列一直保持着所研究的对变量之间的相关性,直到最后一棵树。研究结果表明,copula函数能较好地分析不同气候条件下的蒸散量,可用于预测非线性变量的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the probabilistic behavior of reference evapotranspiration using Vine tree sequence

Reference evapotranspiration, which includes the contribution of climatic conditions in potential evapotranspiration, is considered as an important and strategic criterion in water resources management and irrigation designs. Therefore, it is necessary to determine and predict its changes in each region. In this study, using copula functions, the behavior and changes of this component were investigated in the west of Iran. For this purpose, the meteorological information of nine synoptic stations including Tmax, Tmin, WS, Rs, RHmax, and RHmin were used. This research aims to explore multivariate simulation based on vine tree sequences. Among these parameters, wind speed had the least effect on ET0, and in all the studied stations, there was the highest correlation between ET0-Tmax pair variable, which was equal to 0.90, 0.87, 0.89, 0.88, 0.86, 0.85, 0.88, and 0.81 in Aligudarz, Azna, Borujerd, Dorud, Khorramabad, Kuhdasht, Nurabad, and Poldakhter stations, respectively, based on Kendall's Tau statistics. The tree sequence of vine copulas including C-, D-, and R-vine was examined according to the input variables based on AIC and logarithm of likelihood evaluation criteria. According to the results, it was found that based on the evaluation criteria, the D-vine tree sequence has the best performance in the joint probability analysis of the studied variables. In addition, the results showed that the D-vine tree sequence, unlike the two R and C type sequences, has maintained the correlation between the studied pair variables until the last tree. The results of this study showed that copula functions could analyze evapotranspiration in different climates with high capability, which can be used in predicting the behavior of non-linear variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信