Éverton da Silva Santos, Denise Tiemi Uchida, Marcos Luciano Bruschi
{"title":"家蚕丝胶作为DLP 3D打印在制药和生物医学应用的副产品","authors":"Éverton da Silva Santos, Denise Tiemi Uchida, Marcos Luciano Bruschi","doi":"10.1208/s12249-025-03108-5","DOIUrl":null,"url":null,"abstract":"<div><p>Sericin, a silk-derived protein, has emerged as a potential material for Digital Light Processing (DLP) printing, particularly in uses requiring biocompatibility and sustainability. Sericin is a candidate for developing durable and precise 3D-printed structures due to its natural origin and intrinsic properties like film-forming ability and cross-linking potential. Its biocompatibility makes it suitable for medical applications, such as targeted delivery of anticancer drugs or creation of therapeutic supports directly on affected skin, orthodontic and cosmetic biomaterials, disease modulation, wound healing, antioxidant and antimicrobial applications, and regenerative medicine. Additionally, sericin can strengthen and stabilize printed structures while maintaining environmental integrity, aligning with the growing demand for eco-friendly materials in advanced manufacturing. However, formulating sericin-based resins for DLP printing presents challenges, including optimizing cross-linking and curing processes for obtaining desired properties of material. Overcoming these challenges could unlock the full potential of sericin in diverse fields, such as tissue engineering, where biocompatibility and precise structural integrity are critical. This review investigates the potential of sericin-based resins for 3D printing, emphasizing the protein’s compatibility with photopolymerizable systems and its capacity to improve the overall performance of DLP-printed materials. Further research is essential to refine sericin-based formulations, enabling their broader application in 3D printing technologies. By examining the unique characteristics of sericin, including its origins and material properties, this review underscores the protein's potential to drive innovation in sustainable manufacturing. Ultimately, sericin offers a viable alternative to synthetic resins and holds promise for advancing both biomedical and environmental applications through innovative 3D printing technologies.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sericin from Bombyx Mori as a By-product for DLP 3D Printing in Pharmaceutical and Biomedical Applications\",\"authors\":\"Éverton da Silva Santos, Denise Tiemi Uchida, Marcos Luciano Bruschi\",\"doi\":\"10.1208/s12249-025-03108-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sericin, a silk-derived protein, has emerged as a potential material for Digital Light Processing (DLP) printing, particularly in uses requiring biocompatibility and sustainability. Sericin is a candidate for developing durable and precise 3D-printed structures due to its natural origin and intrinsic properties like film-forming ability and cross-linking potential. Its biocompatibility makes it suitable for medical applications, such as targeted delivery of anticancer drugs or creation of therapeutic supports directly on affected skin, orthodontic and cosmetic biomaterials, disease modulation, wound healing, antioxidant and antimicrobial applications, and regenerative medicine. Additionally, sericin can strengthen and stabilize printed structures while maintaining environmental integrity, aligning with the growing demand for eco-friendly materials in advanced manufacturing. However, formulating sericin-based resins for DLP printing presents challenges, including optimizing cross-linking and curing processes for obtaining desired properties of material. Overcoming these challenges could unlock the full potential of sericin in diverse fields, such as tissue engineering, where biocompatibility and precise structural integrity are critical. This review investigates the potential of sericin-based resins for 3D printing, emphasizing the protein’s compatibility with photopolymerizable systems and its capacity to improve the overall performance of DLP-printed materials. Further research is essential to refine sericin-based formulations, enabling their broader application in 3D printing technologies. By examining the unique characteristics of sericin, including its origins and material properties, this review underscores the protein's potential to drive innovation in sustainable manufacturing. Ultimately, sericin offers a viable alternative to synthetic resins and holds promise for advancing both biomedical and environmental applications through innovative 3D printing technologies.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":6925,\"journal\":{\"name\":\"AAPS PharmSciTech\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS PharmSciTech\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1208/s12249-025-03108-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03108-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Sericin from Bombyx Mori as a By-product for DLP 3D Printing in Pharmaceutical and Biomedical Applications
Sericin, a silk-derived protein, has emerged as a potential material for Digital Light Processing (DLP) printing, particularly in uses requiring biocompatibility and sustainability. Sericin is a candidate for developing durable and precise 3D-printed structures due to its natural origin and intrinsic properties like film-forming ability and cross-linking potential. Its biocompatibility makes it suitable for medical applications, such as targeted delivery of anticancer drugs or creation of therapeutic supports directly on affected skin, orthodontic and cosmetic biomaterials, disease modulation, wound healing, antioxidant and antimicrobial applications, and regenerative medicine. Additionally, sericin can strengthen and stabilize printed structures while maintaining environmental integrity, aligning with the growing demand for eco-friendly materials in advanced manufacturing. However, formulating sericin-based resins for DLP printing presents challenges, including optimizing cross-linking and curing processes for obtaining desired properties of material. Overcoming these challenges could unlock the full potential of sericin in diverse fields, such as tissue engineering, where biocompatibility and precise structural integrity are critical. This review investigates the potential of sericin-based resins for 3D printing, emphasizing the protein’s compatibility with photopolymerizable systems and its capacity to improve the overall performance of DLP-printed materials. Further research is essential to refine sericin-based formulations, enabling their broader application in 3D printing technologies. By examining the unique characteristics of sericin, including its origins and material properties, this review underscores the protein's potential to drive innovation in sustainable manufacturing. Ultimately, sericin offers a viable alternative to synthetic resins and holds promise for advancing both biomedical and environmental applications through innovative 3D printing technologies.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.