载刺芒柄花素PLGA大孔微粒经气管内灌注治疗博莱霉素诱导的肺纤维化

IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Hongting Liu, Yao Sun, Shihao Cai, Conglu Zhao, Xiang xu, Aiguo Xu, Honggang Zhou, Cheng Yang, Xiaoting Gu, Xiaoyu Ai
{"title":"载刺芒柄花素PLGA大孔微粒经气管内灌注治疗博莱霉素诱导的肺纤维化","authors":"Hongting Liu,&nbsp;Yao Sun,&nbsp;Shihao Cai,&nbsp;Conglu Zhao,&nbsp;Xiang xu,&nbsp;Aiguo Xu,&nbsp;Honggang Zhou,&nbsp;Cheng Yang,&nbsp;Xiaoting Gu,&nbsp;Xiaoyu Ai","doi":"10.1208/s12249-025-03089-5","DOIUrl":null,"url":null,"abstract":"<div><p>Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown cause, with few effective therapies available and high mortality rates. Our preceding research indicated that formononetin (FMN) could improve the symptoms of the bleomycin-induced pulmonary fibrosis and be a promising drug against IPF. In this study, an inhalable formononetin-loaded poly(lactic-co-glycolic) acid (PLGA) large porous microspheres (FMN-PLGA-MSs) was prepared by the method of emulsion solvent evaporation. SEM showed that FMN-PLGA-MSs were loose particles existing many pores on the surfaces, and the measured mean geometric diameter was more than 10 µm. The encapsulation efficiency (EE) and drug loading efficiency (DL) were 87.72 ± 6.34% and 4.18 ± 0.30%. FMN in FMN-PLGA-MSs could be rapidly released within 2 h and sustainably released for 21 d. Cell tests and q-RT-PCR tests showed that FMN could inhibit the activation of fibroblasts and the deposition of extracellular matrix (ECM) by acting on the TGF-β1/Smad3 signaling pathway. FMN-PLGA-MSs showed higher antifibrotic effects than free FMN oral administration in the pulmonary fibrosis models of mice, remarkably improving pulmonary function, decreasing hydroxyproline levels, and attenuating lung injuries. By formulating formononetin into microsphere preparations, its solubility can be significantly enhanced, enabling effective pulmonary drug delivery. This approach not only improves lung targeting but also reduces systemic toxicity. Additionally, it facilitates superior lung deposition and extends the retention time of the formononetin within the lungs. Taken together, FMN-PLGA-MSs may be a promising inhaled medication for the treatment of IPF.</p><h3>Graphical Abstract</h3><p>Formononetin (FMN) can improve the symptoms of idiopathic pulmonary fibrosis (IPF). Large porous microparticle can improve lung retention and lung targeting. FMN is loaded in poly(lactic-co-glycolic)acid (PLGA) to get microspheres (FMN-PLGA-MSs) for intratracheal instillation treatment of IPF. FMN-PLGA-MSs remarkably improved pulmonary function, decreased hydroxyproline, and attenuated lung injuries. FMN-PLGA-MSs are promising intratracheal instillation medication for the treatment of IPF.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formononetin-Loaded PLGA Large Porous Microparticles via Intratracheal Instillation for Bleomycin-Induced Pulmonary Fibrosis Treatment\",\"authors\":\"Hongting Liu,&nbsp;Yao Sun,&nbsp;Shihao Cai,&nbsp;Conglu Zhao,&nbsp;Xiang xu,&nbsp;Aiguo Xu,&nbsp;Honggang Zhou,&nbsp;Cheng Yang,&nbsp;Xiaoting Gu,&nbsp;Xiaoyu Ai\",\"doi\":\"10.1208/s12249-025-03089-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown cause, with few effective therapies available and high mortality rates. Our preceding research indicated that formononetin (FMN) could improve the symptoms of the bleomycin-induced pulmonary fibrosis and be a promising drug against IPF. In this study, an inhalable formononetin-loaded poly(lactic-co-glycolic) acid (PLGA) large porous microspheres (FMN-PLGA-MSs) was prepared by the method of emulsion solvent evaporation. SEM showed that FMN-PLGA-MSs were loose particles existing many pores on the surfaces, and the measured mean geometric diameter was more than 10 µm. The encapsulation efficiency (EE) and drug loading efficiency (DL) were 87.72 ± 6.34% and 4.18 ± 0.30%. FMN in FMN-PLGA-MSs could be rapidly released within 2 h and sustainably released for 21 d. Cell tests and q-RT-PCR tests showed that FMN could inhibit the activation of fibroblasts and the deposition of extracellular matrix (ECM) by acting on the TGF-β1/Smad3 signaling pathway. FMN-PLGA-MSs showed higher antifibrotic effects than free FMN oral administration in the pulmonary fibrosis models of mice, remarkably improving pulmonary function, decreasing hydroxyproline levels, and attenuating lung injuries. By formulating formononetin into microsphere preparations, its solubility can be significantly enhanced, enabling effective pulmonary drug delivery. This approach not only improves lung targeting but also reduces systemic toxicity. Additionally, it facilitates superior lung deposition and extends the retention time of the formononetin within the lungs. Taken together, FMN-PLGA-MSs may be a promising inhaled medication for the treatment of IPF.</p><h3>Graphical Abstract</h3><p>Formononetin (FMN) can improve the symptoms of idiopathic pulmonary fibrosis (IPF). Large porous microparticle can improve lung retention and lung targeting. FMN is loaded in poly(lactic-co-glycolic)acid (PLGA) to get microspheres (FMN-PLGA-MSs) for intratracheal instillation treatment of IPF. FMN-PLGA-MSs remarkably improved pulmonary function, decreased hydroxyproline, and attenuated lung injuries. FMN-PLGA-MSs are promising intratracheal instillation medication for the treatment of IPF.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":6925,\"journal\":{\"name\":\"AAPS PharmSciTech\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS PharmSciTech\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1208/s12249-025-03089-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03089-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

特发性肺纤维化(IPF)是一种病因不明的进行性肺部疾病,有效的治疗方法很少,死亡率很高。我们前期研究表明,刺芒柄花素(FMN)可改善博莱霉素所致肺纤维化的症状,是一种很有前景的抗IPF药物。本研究采用乳液溶剂蒸发法制备了一种可吸入装药的聚乳酸-羟基乙酸(PLGA)大孔微球(FMN-PLGA-MSs)。SEM结果表明,FMN-PLGA-MSs为疏松颗粒,表面存在许多孔隙,测得的平均几何直径大于10µm。包封效率(EE)和载药效率(DL)分别为87.72±6.34%和4.18±0.30%。FMN- plga - mss中的FMN可在2 h内快速释放,并持续释放21 d。细胞实验和q-RT-PCR实验表明,FMN可通过作用于TGF-β1/Smad3信号通路抑制成纤维细胞的活化和细胞外基质(ECM)的沉积。在小鼠肺纤维化模型中,FMN- plga - mss的抗纤维化作用优于游离口服FMN,可显著改善肺功能,降低羟脯氨酸水平,减轻肺损伤。通过将刺芒柄花素配制成微球制剂,可以显著提高其溶解度,从而实现有效的肺给药。这种方法不仅提高了肺部靶向性,而且降低了全身毒性。此外,它有利于优越的肺沉积和延长芒柄花素在肺内的滞留时间。综上所述,FMN-PLGA-MSs可能是一种治疗IPF的有前途的吸入药物。芒柄花素(FMN)可改善特发性肺纤维化(IPF)的症状。大孔微粒可改善肺潴留和肺靶向性。将FMN装入聚乳酸-羟基乙酸(PLGA)中得到微球(FMN-PLGA- ms),用于气管内滴注治疗IPF。FMN-PLGA-MSs显著改善肺功能,降低羟脯氨酸,减轻肺损伤。FMN-PLGA-MSs是治疗IPF的有前途的气管内滴注药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formononetin-Loaded PLGA Large Porous Microparticles via Intratracheal Instillation for Bleomycin-Induced Pulmonary Fibrosis Treatment

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown cause, with few effective therapies available and high mortality rates. Our preceding research indicated that formononetin (FMN) could improve the symptoms of the bleomycin-induced pulmonary fibrosis and be a promising drug against IPF. In this study, an inhalable formononetin-loaded poly(lactic-co-glycolic) acid (PLGA) large porous microspheres (FMN-PLGA-MSs) was prepared by the method of emulsion solvent evaporation. SEM showed that FMN-PLGA-MSs were loose particles existing many pores on the surfaces, and the measured mean geometric diameter was more than 10 µm. The encapsulation efficiency (EE) and drug loading efficiency (DL) were 87.72 ± 6.34% and 4.18 ± 0.30%. FMN in FMN-PLGA-MSs could be rapidly released within 2 h and sustainably released for 21 d. Cell tests and q-RT-PCR tests showed that FMN could inhibit the activation of fibroblasts and the deposition of extracellular matrix (ECM) by acting on the TGF-β1/Smad3 signaling pathway. FMN-PLGA-MSs showed higher antifibrotic effects than free FMN oral administration in the pulmonary fibrosis models of mice, remarkably improving pulmonary function, decreasing hydroxyproline levels, and attenuating lung injuries. By formulating formononetin into microsphere preparations, its solubility can be significantly enhanced, enabling effective pulmonary drug delivery. This approach not only improves lung targeting but also reduces systemic toxicity. Additionally, it facilitates superior lung deposition and extends the retention time of the formononetin within the lungs. Taken together, FMN-PLGA-MSs may be a promising inhaled medication for the treatment of IPF.

Graphical Abstract

Formononetin (FMN) can improve the symptoms of idiopathic pulmonary fibrosis (IPF). Large porous microparticle can improve lung retention and lung targeting. FMN is loaded in poly(lactic-co-glycolic)acid (PLGA) to get microspheres (FMN-PLGA-MSs) for intratracheal instillation treatment of IPF. FMN-PLGA-MSs remarkably improved pulmonary function, decreased hydroxyproline, and attenuated lung injuries. FMN-PLGA-MSs are promising intratracheal instillation medication for the treatment of IPF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AAPS PharmSciTech
AAPS PharmSciTech 医学-药学
CiteScore
6.80
自引率
3.00%
发文量
264
审稿时长
2.4 months
期刊介绍: AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信