用于治疗干眼症的环孢素洗脱纳米药物贮备膜

IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Pinal Chaudhari, Vivek M. Ghate, Madhavan Nampoothiri, Shaila A. Lewis
{"title":"用于治疗干眼症的环孢素洗脱纳米药物贮备膜","authors":"Pinal Chaudhari,&nbsp;Vivek M. Ghate,&nbsp;Madhavan Nampoothiri,&nbsp;Shaila A. Lewis","doi":"10.1208/s12249-025-03104-9","DOIUrl":null,"url":null,"abstract":"<div><p>Cyclosporine A (CsA) is widely used to treat dry eye disease (DED), and ocular morbidity is on the rise and is a growing concern globally. However, several drug and formulation challenges, such as poor drug solubility, short pre-corneal residence time, and poor patient compliance, have limited the ocular bioavailability of CsA to &lt; 5%. A CsA cyclodextrin-based ternary complex loaded dissolvable nano drug reservoir films were developed to overcome these limitations and efficiently manage DED. Drug-loaded nano-reservoir films were fabricated via lithography using silicone and poly (dimethyl siloxane) (PDMS) molds. Different physicochemical characterizations were performed to confirm the formation of stable CsA-cyclodextrin-based ternary complexes. Formation of nanoreservoirs on the films was confirmed using SEM and AFM. Optimized CsA-complex-loaded nano-reservoir films were evaluated for <i>in vitro</i> drug release, ex vivo corneal permeation, and <i>in vivo</i> precorneal retention. Preclinical efficacy studies were performed to assess the efficacy of CsA-complex-loaded nano-reservoirs in an experimental dry-eye mouse model. Physicochemical characterization confirmed the formation of a stable complex and the improved solubility of CsA. In vitro release and ex vivo permeation studies indicated a controlled drug release and improved permeation, respectively. Furthermore, tear volume measurement and corneal damage assessment using slit-lamp imaging suggested decreased dry eye symptoms, significantly increasing tear volume in the drug-loaded nano-reservoir-treated group. Moreover, histopathological studies corroborated the tear volume and slit-lamp imaging results, with reduced inflammation and neovascularization. The poorly water-soluble drug with cyclodextrin complex incorporated nanoreservoir films presents a potential alternative for managing various ocular diseases.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-025-03104-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Cyclosporine a Eluting Nano Drug Reservoir Film for the Management of Dry Eye Disease\",\"authors\":\"Pinal Chaudhari,&nbsp;Vivek M. Ghate,&nbsp;Madhavan Nampoothiri,&nbsp;Shaila A. Lewis\",\"doi\":\"10.1208/s12249-025-03104-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cyclosporine A (CsA) is widely used to treat dry eye disease (DED), and ocular morbidity is on the rise and is a growing concern globally. However, several drug and formulation challenges, such as poor drug solubility, short pre-corneal residence time, and poor patient compliance, have limited the ocular bioavailability of CsA to &lt; 5%. A CsA cyclodextrin-based ternary complex loaded dissolvable nano drug reservoir films were developed to overcome these limitations and efficiently manage DED. Drug-loaded nano-reservoir films were fabricated via lithography using silicone and poly (dimethyl siloxane) (PDMS) molds. Different physicochemical characterizations were performed to confirm the formation of stable CsA-cyclodextrin-based ternary complexes. Formation of nanoreservoirs on the films was confirmed using SEM and AFM. Optimized CsA-complex-loaded nano-reservoir films were evaluated for <i>in vitro</i> drug release, ex vivo corneal permeation, and <i>in vivo</i> precorneal retention. Preclinical efficacy studies were performed to assess the efficacy of CsA-complex-loaded nano-reservoirs in an experimental dry-eye mouse model. Physicochemical characterization confirmed the formation of a stable complex and the improved solubility of CsA. In vitro release and ex vivo permeation studies indicated a controlled drug release and improved permeation, respectively. Furthermore, tear volume measurement and corneal damage assessment using slit-lamp imaging suggested decreased dry eye symptoms, significantly increasing tear volume in the drug-loaded nano-reservoir-treated group. Moreover, histopathological studies corroborated the tear volume and slit-lamp imaging results, with reduced inflammation and neovascularization. The poorly water-soluble drug with cyclodextrin complex incorporated nanoreservoir films presents a potential alternative for managing various ocular diseases.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":6925,\"journal\":{\"name\":\"AAPS PharmSciTech\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1208/s12249-025-03104-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS PharmSciTech\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1208/s12249-025-03104-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03104-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

环孢素A (CsA)被广泛用于治疗干眼病(DED),眼病发病率呈上升趋势,在全球范围内日益受到关注。然而,一些药物和配方方面的挑战,如药物溶解度差、角膜前停留时间短、患者依从性差,将CsA的眼生物利用度限制在5%。为了克服这些限制,开发了一种基于CsA环糊精的三元配合物负载可溶纳米药物储层膜。采用硅树脂和聚二甲基硅氧烷(PDMS)模具,通过光刻技术制备了载药纳米储层膜。通过不同的物理化学表征来确定csa -环糊精基三元配合物的形成。利用扫描电镜和原子力显微镜证实了薄膜上纳米储层的形成。对优化后的csa复合物负载纳米储层膜的体外药物释放、体外角膜渗透和体内角膜前滞留进行了评价。在实验性干眼小鼠模型中进行了临床前疗效研究,以评估负载csa复合物的纳米储层的疗效。理化性质证实了CsA形成了稳定的配合物,并改善了其溶解度。体外释放和体外渗透研究分别表明药物释放控制和渗透改善。此外,泪液体积测量和使用裂隙灯成像的角膜损伤评估表明,干眼症状减轻,载药纳米储存库处理组泪液体积显著增加。此外,组织病理学研究证实了撕裂量和裂隙灯成像结果,炎症和新生血管减少。低水溶性药物环糊精复合物纳入纳米水库膜提供了一个潜在的替代方案,以管理各种眼部疾病。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclosporine a Eluting Nano Drug Reservoir Film for the Management of Dry Eye Disease

Cyclosporine A (CsA) is widely used to treat dry eye disease (DED), and ocular morbidity is on the rise and is a growing concern globally. However, several drug and formulation challenges, such as poor drug solubility, short pre-corneal residence time, and poor patient compliance, have limited the ocular bioavailability of CsA to < 5%. A CsA cyclodextrin-based ternary complex loaded dissolvable nano drug reservoir films were developed to overcome these limitations and efficiently manage DED. Drug-loaded nano-reservoir films were fabricated via lithography using silicone and poly (dimethyl siloxane) (PDMS) molds. Different physicochemical characterizations were performed to confirm the formation of stable CsA-cyclodextrin-based ternary complexes. Formation of nanoreservoirs on the films was confirmed using SEM and AFM. Optimized CsA-complex-loaded nano-reservoir films were evaluated for in vitro drug release, ex vivo corneal permeation, and in vivo precorneal retention. Preclinical efficacy studies were performed to assess the efficacy of CsA-complex-loaded nano-reservoirs in an experimental dry-eye mouse model. Physicochemical characterization confirmed the formation of a stable complex and the improved solubility of CsA. In vitro release and ex vivo permeation studies indicated a controlled drug release and improved permeation, respectively. Furthermore, tear volume measurement and corneal damage assessment using slit-lamp imaging suggested decreased dry eye symptoms, significantly increasing tear volume in the drug-loaded nano-reservoir-treated group. Moreover, histopathological studies corroborated the tear volume and slit-lamp imaging results, with reduced inflammation and neovascularization. The poorly water-soluble drug with cyclodextrin complex incorporated nanoreservoir films presents a potential alternative for managing various ocular diseases.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AAPS PharmSciTech
AAPS PharmSciTech 医学-药学
CiteScore
6.80
自引率
3.00%
发文量
264
审稿时长
2.4 months
期刊介绍: AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信