Ling Shi, Anping Li, Yuying Xu, Hongping Yang, Guangming Yang
{"title":"一种新型离子液体负载的聚噻吩[3,2-b]噻吩涂层用于气相色谱-质谱法从环境水中固相微萃取酚类化合物","authors":"Ling Shi, Anping Li, Yuying Xu, Hongping Yang, Guangming Yang","doi":"10.1007/s00604-025-07157-2","DOIUrl":null,"url":null,"abstract":"<div><p>A novel thieno[3,2-b]thiophene (TT) was utilized for the first time to electrochemically fabricate an ionic liquid (IL)-supported polythieno[3,2-b]thiophene (PTT) coating. This innovative coating serves as a new headspace solid-phase microextraction (HS-SPME) material for the extraction of five phenolic compounds, which were subsequently determined via gas chromatography-mass spectrometry (GC–MS). The coating was characterized using Fourier-transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Experimental results confirmed that the ILs were successfully embedded within the polymer matrix, resulting in a well-defined three-dimensional mesoporous architecture. This unique architecture not only exhibited high thermal stability but also maintained a consistent extraction performance when used for the solid-phase microextraction of phenolic compounds. To optimize the extraction and detection performance, various experimental parameters were investigated, including the coating type, pH, salt concentration, extraction time, extraction temperature, stirring rate, desorption time, and temperature. Under the optimal conditions identified, the method exhibited low limits of detection ranging from 0.001 to 0.007 μg mL<sup>−1</sup> and wide linearity in the concentration range 0.030 to 10.000 μg mL<sup>−1</sup>. Noteworthily, the proposed method was successfully applied to the determination of five phenols in actual water samples, achieving satisfactory recoveries between 90.5% and 110.5%.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 5","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel ionic-liquid-supported polythieno[3,2-b]thiophene coating for headspace solid-phase microextraction of phenolic compounds from environmental water via gas chromatography-mass spectrometry\",\"authors\":\"Ling Shi, Anping Li, Yuying Xu, Hongping Yang, Guangming Yang\",\"doi\":\"10.1007/s00604-025-07157-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel thieno[3,2-b]thiophene (TT) was utilized for the first time to electrochemically fabricate an ionic liquid (IL)-supported polythieno[3,2-b]thiophene (PTT) coating. This innovative coating serves as a new headspace solid-phase microextraction (HS-SPME) material for the extraction of five phenolic compounds, which were subsequently determined via gas chromatography-mass spectrometry (GC–MS). The coating was characterized using Fourier-transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Experimental results confirmed that the ILs were successfully embedded within the polymer matrix, resulting in a well-defined three-dimensional mesoporous architecture. This unique architecture not only exhibited high thermal stability but also maintained a consistent extraction performance when used for the solid-phase microextraction of phenolic compounds. To optimize the extraction and detection performance, various experimental parameters were investigated, including the coating type, pH, salt concentration, extraction time, extraction temperature, stirring rate, desorption time, and temperature. Under the optimal conditions identified, the method exhibited low limits of detection ranging from 0.001 to 0.007 μg mL<sup>−1</sup> and wide linearity in the concentration range 0.030 to 10.000 μg mL<sup>−1</sup>. Noteworthily, the proposed method was successfully applied to the determination of five phenols in actual water samples, achieving satisfactory recoveries between 90.5% and 110.5%.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"192 5\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-025-07157-2\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07157-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A novel ionic-liquid-supported polythieno[3,2-b]thiophene coating for headspace solid-phase microextraction of phenolic compounds from environmental water via gas chromatography-mass spectrometry
A novel thieno[3,2-b]thiophene (TT) was utilized for the first time to electrochemically fabricate an ionic liquid (IL)-supported polythieno[3,2-b]thiophene (PTT) coating. This innovative coating serves as a new headspace solid-phase microextraction (HS-SPME) material for the extraction of five phenolic compounds, which were subsequently determined via gas chromatography-mass spectrometry (GC–MS). The coating was characterized using Fourier-transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Experimental results confirmed that the ILs were successfully embedded within the polymer matrix, resulting in a well-defined three-dimensional mesoporous architecture. This unique architecture not only exhibited high thermal stability but also maintained a consistent extraction performance when used for the solid-phase microextraction of phenolic compounds. To optimize the extraction and detection performance, various experimental parameters were investigated, including the coating type, pH, salt concentration, extraction time, extraction temperature, stirring rate, desorption time, and temperature. Under the optimal conditions identified, the method exhibited low limits of detection ranging from 0.001 to 0.007 μg mL−1 and wide linearity in the concentration range 0.030 to 10.000 μg mL−1. Noteworthily, the proposed method was successfully applied to the determination of five phenols in actual water samples, achieving satisfactory recoveries between 90.5% and 110.5%.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.