Hamza Djelouat;Reijo Leinonen;Mikko J. Sillanpää;Bhaskar D. Rao;Markku Juntti
{"title":"块稀疏信号恢复的全变异先验自适应自调谐SBL","authors":"Hamza Djelouat;Reijo Leinonen;Mikko J. Sillanpää;Bhaskar D. Rao;Markku Juntti","doi":"10.1109/LSP.2025.3556790","DOIUrl":null,"url":null,"abstract":"This letter addresses the problem of estimating block sparse signal with unknown group partitions in a multiple measurement vector (MMV) setup. We propose a Bayesian framework by applying an adaptive total variation (TV) penalty on the hyper-parameter space of the sparse signal. The main contributions are two-fold. 1) We extend the TV penalty beyond the immediate neighbor, thus enabling better capture of the signal structure. 2) A dynamic framework is provided to learn the regularization weights for the TV penalty based on the statistical dependencies between the entries of tentative blocks, thus eliminating the need for fine-tuning. The superior performance of the proposed method is empirically demonstrated by extensive computer simulations with the state-of-art benchmarks. The proposed solution exhibits both excellent performance and robustness against sparsity model mismatch.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1555-1559"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10946850","citationCount":"0","resultStr":"{\"title\":\"Adaptive and Self-Tuning SBL With Total Variation Priors for Block-Sparse Signal Recovery\",\"authors\":\"Hamza Djelouat;Reijo Leinonen;Mikko J. Sillanpää;Bhaskar D. Rao;Markku Juntti\",\"doi\":\"10.1109/LSP.2025.3556790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter addresses the problem of estimating block sparse signal with unknown group partitions in a multiple measurement vector (MMV) setup. We propose a Bayesian framework by applying an adaptive total variation (TV) penalty on the hyper-parameter space of the sparse signal. The main contributions are two-fold. 1) We extend the TV penalty beyond the immediate neighbor, thus enabling better capture of the signal structure. 2) A dynamic framework is provided to learn the regularization weights for the TV penalty based on the statistical dependencies between the entries of tentative blocks, thus eliminating the need for fine-tuning. The superior performance of the proposed method is empirically demonstrated by extensive computer simulations with the state-of-art benchmarks. The proposed solution exhibits both excellent performance and robustness against sparsity model mismatch.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"1555-1559\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10946850\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10946850/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10946850/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Adaptive and Self-Tuning SBL With Total Variation Priors for Block-Sparse Signal Recovery
This letter addresses the problem of estimating block sparse signal with unknown group partitions in a multiple measurement vector (MMV) setup. We propose a Bayesian framework by applying an adaptive total variation (TV) penalty on the hyper-parameter space of the sparse signal. The main contributions are two-fold. 1) We extend the TV penalty beyond the immediate neighbor, thus enabling better capture of the signal structure. 2) A dynamic framework is provided to learn the regularization weights for the TV penalty based on the statistical dependencies between the entries of tentative blocks, thus eliminating the need for fine-tuning. The superior performance of the proposed method is empirically demonstrated by extensive computer simulations with the state-of-art benchmarks. The proposed solution exhibits both excellent performance and robustness against sparsity model mismatch.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.