{"title":"一种近牛顿自适应重要性采样器","authors":"Víctor Elvira;Émilie Chouzenoux;O. Deniz Akyildiz","doi":"10.1109/LSP.2025.3553790","DOIUrl":null,"url":null,"abstract":"Adaptive importance sampling (AIS) algorithms are a rising methodology in signal processing, statistics, and machine learning. An effective adaptation of the proposals is key for the success of AIS. Recent works have shown that gradient information about the involved target density can greatly boost performance, but its applicability is restricted to differentiable targets. In this letter, we propose a proximal Newton adaptive importance sampler for the estimation of expectations with respect to non-smooth target distributions. We implement a scaled Newton proximal gradient method to adapt the proposal distributions, enabling efficient and optimized moves even when the target distribution lacks differentiability. We show the good performance of the algorithm in two scenarios: one with convex constraints and another with non-smooth sparse priors.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1545-1549"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Proximal Newton Adaptive Importance Sampler\",\"authors\":\"Víctor Elvira;Émilie Chouzenoux;O. Deniz Akyildiz\",\"doi\":\"10.1109/LSP.2025.3553790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive importance sampling (AIS) algorithms are a rising methodology in signal processing, statistics, and machine learning. An effective adaptation of the proposals is key for the success of AIS. Recent works have shown that gradient information about the involved target density can greatly boost performance, but its applicability is restricted to differentiable targets. In this letter, we propose a proximal Newton adaptive importance sampler for the estimation of expectations with respect to non-smooth target distributions. We implement a scaled Newton proximal gradient method to adapt the proposal distributions, enabling efficient and optimized moves even when the target distribution lacks differentiability. We show the good performance of the algorithm in two scenarios: one with convex constraints and another with non-smooth sparse priors.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"1545-1549\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10937125/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10937125/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Adaptive importance sampling (AIS) algorithms are a rising methodology in signal processing, statistics, and machine learning. An effective adaptation of the proposals is key for the success of AIS. Recent works have shown that gradient information about the involved target density can greatly boost performance, but its applicability is restricted to differentiable targets. In this letter, we propose a proximal Newton adaptive importance sampler for the estimation of expectations with respect to non-smooth target distributions. We implement a scaled Newton proximal gradient method to adapt the proposal distributions, enabling efficient and optimized moves even when the target distribution lacks differentiability. We show the good performance of the algorithm in two scenarios: one with convex constraints and another with non-smooth sparse priors.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.