Ruijie Yang;Yuanfang Guo;Chao Zhou;Guohao Li;Yunhong Wang
{"title":"基于矢量量化的直接偏好优化查询高效攻击","authors":"Ruijie Yang;Yuanfang Guo;Chao Zhou;Guohao Li;Yunhong Wang","doi":"10.1109/LSP.2025.3553791","DOIUrl":null,"url":null,"abstract":"This work studies black-box adversarial attacks against deep neural networks, where the attacker only has access to the query feedback from the target model. The current state-of-the-art (SOTA) query-efficient attacks usually combine transfer-based and query-based methods by utilizing the gradient or initializations of surrogate models. However, these strategies typically incur significant computational costs and require a large number of queries during the attack process. In this paper, we propose a novel query-efficient method for generating black-box adversarial perturbations, named Vector Quantization based Query-efficient Adversarial Perturbation generation (VQQAP). Specifically, we propose a Nucleus Sampling based Discretization Module (NSDM) to create diverse adversarial examples in the discrete latent space. To directly optimize the latent vector, we formulate the optimization problem as a direct preference optimization (DPO) problem, and iteratively solve this problem based on the target model feedback. Experimental evaluations demonstrate the effectiveness and efficiency of our method.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1550-1554"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vector Quantization Based Query-Efficient Attack via Direct Preference Optimization\",\"authors\":\"Ruijie Yang;Yuanfang Guo;Chao Zhou;Guohao Li;Yunhong Wang\",\"doi\":\"10.1109/LSP.2025.3553791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work studies black-box adversarial attacks against deep neural networks, where the attacker only has access to the query feedback from the target model. The current state-of-the-art (SOTA) query-efficient attacks usually combine transfer-based and query-based methods by utilizing the gradient or initializations of surrogate models. However, these strategies typically incur significant computational costs and require a large number of queries during the attack process. In this paper, we propose a novel query-efficient method for generating black-box adversarial perturbations, named Vector Quantization based Query-efficient Adversarial Perturbation generation (VQQAP). Specifically, we propose a Nucleus Sampling based Discretization Module (NSDM) to create diverse adversarial examples in the discrete latent space. To directly optimize the latent vector, we formulate the optimization problem as a direct preference optimization (DPO) problem, and iteratively solve this problem based on the target model feedback. Experimental evaluations demonstrate the effectiveness and efficiency of our method.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"1550-1554\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10937111/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10937111/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Vector Quantization Based Query-Efficient Attack via Direct Preference Optimization
This work studies black-box adversarial attacks against deep neural networks, where the attacker only has access to the query feedback from the target model. The current state-of-the-art (SOTA) query-efficient attacks usually combine transfer-based and query-based methods by utilizing the gradient or initializations of surrogate models. However, these strategies typically incur significant computational costs and require a large number of queries during the attack process. In this paper, we propose a novel query-efficient method for generating black-box adversarial perturbations, named Vector Quantization based Query-efficient Adversarial Perturbation generation (VQQAP). Specifically, we propose a Nucleus Sampling based Discretization Module (NSDM) to create diverse adversarial examples in the discrete latent space. To directly optimize the latent vector, we formulate the optimization problem as a direct preference optimization (DPO) problem, and iteratively solve this problem based on the target model feedback. Experimental evaluations demonstrate the effectiveness and efficiency of our method.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.