Sung-June Byun;Byeong-Gi Jang;Jong-Wan Jo;Dae-Young Choi;Young-Gun Pu;Sang-Sun Yoo;Seok-Kee Kim;Yeon-Jae Jung;Kang-Yoon Lee
{"title":"基于高压栅极驱动的高效双向四开关降压-升压变换器的设计","authors":"Sung-June Byun;Byeong-Gi Jang;Jong-Wan Jo;Dae-Young Choi;Young-Gun Pu;Sang-Sun Yoo;Seok-Kee Kim;Yeon-Jae Jung;Kang-Yoon Lee","doi":"10.1109/OJCAS.2025.3557835","DOIUrl":null,"url":null,"abstract":"This paper presents a bidirectional Four-Switch Buck-Boost (FSBB) converter with a high-voltage (HV) gate driver for use in power bank applications. The proposed FSBB is also integrated into this converter for increased efficiency. Thus, the proposed buck-boost converter can reduce conduction loss over a wide input voltage range by reducing the on-resistance of external MOSFETs using a gate source voltage (VGS) of 5V or 10V. The chip to be examined in this study is fabricated using a 130 nm 1P5M bipolar-CMOS-DMOS HV process with laterally diffused MOSFET (LDMOS) options to have a die size of 2.7 x 2.7 mm2. The proposed architecture is found to achieve a maximum output power level of 40W. The measurement results show that the maximum efficiencies at gate-source voltages (VGS) of 5V and 10V are 96.67% and 98.15%, respectively.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"110-119"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10949157","citationCount":"0","resultStr":"{\"title\":\"Design of a High Efficiency Bi-Directional Four-Switch Buck-Boost Converter With HV Gate Driver for Multi-Cell Battery Power Bank Applications\",\"authors\":\"Sung-June Byun;Byeong-Gi Jang;Jong-Wan Jo;Dae-Young Choi;Young-Gun Pu;Sang-Sun Yoo;Seok-Kee Kim;Yeon-Jae Jung;Kang-Yoon Lee\",\"doi\":\"10.1109/OJCAS.2025.3557835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a bidirectional Four-Switch Buck-Boost (FSBB) converter with a high-voltage (HV) gate driver for use in power bank applications. The proposed FSBB is also integrated into this converter for increased efficiency. Thus, the proposed buck-boost converter can reduce conduction loss over a wide input voltage range by reducing the on-resistance of external MOSFETs using a gate source voltage (VGS) of 5V or 10V. The chip to be examined in this study is fabricated using a 130 nm 1P5M bipolar-CMOS-DMOS HV process with laterally diffused MOSFET (LDMOS) options to have a die size of 2.7 x 2.7 mm2. The proposed architecture is found to achieve a maximum output power level of 40W. The measurement results show that the maximum efficiencies at gate-source voltages (VGS) of 5V and 10V are 96.67% and 98.15%, respectively.\",\"PeriodicalId\":93442,\"journal\":{\"name\":\"IEEE open journal of circuits and systems\",\"volume\":\"6 \",\"pages\":\"110-119\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10949157\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10949157/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10949157/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种带高压栅极驱动器的双向四开关降压升压(FSBB)变换器,用于移动电源应用。所提出的FSBB也集成到该转换器中以提高效率。因此,所提出的降压-升压变换器可以通过使用5V或10V的栅极源电压(VGS)降低外部mosfet的导通电阻来减少宽输入电压范围内的导通损耗。本研究中要研究的芯片采用130 nm 1P5M双极cmos - dmos HV工艺制造,具有横向扩散MOSFET (LDMOS)选项,其芯片尺寸为2.7 x 2.7 mm2。所提出的架构可实现40W的最大输出功率水平。测量结果表明,在5V和10V的栅源电压下,器件的最大效率分别为96.67%和98.15%。
Design of a High Efficiency Bi-Directional Four-Switch Buck-Boost Converter With HV Gate Driver for Multi-Cell Battery Power Bank Applications
This paper presents a bidirectional Four-Switch Buck-Boost (FSBB) converter with a high-voltage (HV) gate driver for use in power bank applications. The proposed FSBB is also integrated into this converter for increased efficiency. Thus, the proposed buck-boost converter can reduce conduction loss over a wide input voltage range by reducing the on-resistance of external MOSFETs using a gate source voltage (VGS) of 5V or 10V. The chip to be examined in this study is fabricated using a 130 nm 1P5M bipolar-CMOS-DMOS HV process with laterally diffused MOSFET (LDMOS) options to have a die size of 2.7 x 2.7 mm2. The proposed architecture is found to achieve a maximum output power level of 40W. The measurement results show that the maximum efficiencies at gate-source voltages (VGS) of 5V and 10V are 96.67% and 98.15%, respectively.