{"title":"相变材料电池热管理系统的电化学-热建模:研究精确模拟的网格类型","authors":"Elnaz Yousefi , Devarajan Ramasamy , Kumaran Kadirgama , Virendra Talele , Hiwa Najafi , Mostafa Olyaei , Nenad Miljkovic , Satyam Panchal","doi":"10.1016/j.ijheatmasstransfer.2025.127107","DOIUrl":null,"url":null,"abstract":"<div><div>Computational techniques have been extensively used in the analysis of heat transfer within battery thermal management systems (BTMS). A fundamental and critical initial step in any numerical analysis is the meshing process, which involves subdividing the geometry into numerous small control volumes, or elements. Here, we investigated the accuracy of the simulated thermal performance of a BTMS using phase change material (PCM) with three different mesh types having: hexahedral, tetrahedral, and polyhedral elements. A detailed electrochemical-thermal model is used for modeling heat generation within a lithium-ion battery. In this model, a pseudo two-dimensional model captures the internal dynamics of the battery and then is integrated with a three-dimensional conjugate heat transfer model. Furthermore, the enthalpy-porosity method is employed for PCM simulation using computational fluid dynamics. Among the three mesh types, the hexahedral mesh demonstrated the closest agreement with experimental data, yielding smooth temperature gradients and PCM liquid fraction contours in post-processing. The polyhedral mesh, while slightly less accurate than the hexahedral mesh, provided a computational advantage, requiring only about a fifth of the elements compared to the hexahedral mesh and a quarter compared to the tetrahedral mesh. This computational efficiency makes the polyhedral mesh the most economical in terms of computational resources. However, tetrahedral mesh, though better suited for complex geometries, exhibited the highest computational cost and produced the least accurate results, making it less favorable for PCM-based BTMS simulations. To further improve the trade-off between computational cost and accuracy, a hybrid mesh configuration is introduced, combining polyhedral and hexahedral elements to enhance simulation efficiency while preserving accuracy.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"247 ","pages":"Article 127107"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical-thermal modeling of phase change material battery thermal management systems: investigating mesh types for accurate simulations\",\"authors\":\"Elnaz Yousefi , Devarajan Ramasamy , Kumaran Kadirgama , Virendra Talele , Hiwa Najafi , Mostafa Olyaei , Nenad Miljkovic , Satyam Panchal\",\"doi\":\"10.1016/j.ijheatmasstransfer.2025.127107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Computational techniques have been extensively used in the analysis of heat transfer within battery thermal management systems (BTMS). A fundamental and critical initial step in any numerical analysis is the meshing process, which involves subdividing the geometry into numerous small control volumes, or elements. Here, we investigated the accuracy of the simulated thermal performance of a BTMS using phase change material (PCM) with three different mesh types having: hexahedral, tetrahedral, and polyhedral elements. A detailed electrochemical-thermal model is used for modeling heat generation within a lithium-ion battery. In this model, a pseudo two-dimensional model captures the internal dynamics of the battery and then is integrated with a three-dimensional conjugate heat transfer model. Furthermore, the enthalpy-porosity method is employed for PCM simulation using computational fluid dynamics. Among the three mesh types, the hexahedral mesh demonstrated the closest agreement with experimental data, yielding smooth temperature gradients and PCM liquid fraction contours in post-processing. The polyhedral mesh, while slightly less accurate than the hexahedral mesh, provided a computational advantage, requiring only about a fifth of the elements compared to the hexahedral mesh and a quarter compared to the tetrahedral mesh. This computational efficiency makes the polyhedral mesh the most economical in terms of computational resources. However, tetrahedral mesh, though better suited for complex geometries, exhibited the highest computational cost and produced the least accurate results, making it less favorable for PCM-based BTMS simulations. To further improve the trade-off between computational cost and accuracy, a hybrid mesh configuration is introduced, combining polyhedral and hexahedral elements to enhance simulation efficiency while preserving accuracy.</div></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"247 \",\"pages\":\"Article 127107\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931025004466\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025004466","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Electrochemical-thermal modeling of phase change material battery thermal management systems: investigating mesh types for accurate simulations
Computational techniques have been extensively used in the analysis of heat transfer within battery thermal management systems (BTMS). A fundamental and critical initial step in any numerical analysis is the meshing process, which involves subdividing the geometry into numerous small control volumes, or elements. Here, we investigated the accuracy of the simulated thermal performance of a BTMS using phase change material (PCM) with three different mesh types having: hexahedral, tetrahedral, and polyhedral elements. A detailed electrochemical-thermal model is used for modeling heat generation within a lithium-ion battery. In this model, a pseudo two-dimensional model captures the internal dynamics of the battery and then is integrated with a three-dimensional conjugate heat transfer model. Furthermore, the enthalpy-porosity method is employed for PCM simulation using computational fluid dynamics. Among the three mesh types, the hexahedral mesh demonstrated the closest agreement with experimental data, yielding smooth temperature gradients and PCM liquid fraction contours in post-processing. The polyhedral mesh, while slightly less accurate than the hexahedral mesh, provided a computational advantage, requiring only about a fifth of the elements compared to the hexahedral mesh and a quarter compared to the tetrahedral mesh. This computational efficiency makes the polyhedral mesh the most economical in terms of computational resources. However, tetrahedral mesh, though better suited for complex geometries, exhibited the highest computational cost and produced the least accurate results, making it less favorable for PCM-based BTMS simulations. To further improve the trade-off between computational cost and accuracy, a hybrid mesh configuration is introduced, combining polyhedral and hexahedral elements to enhance simulation efficiency while preserving accuracy.
期刊介绍:
International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems.
Topics include:
-New methods of measuring and/or correlating transport-property data
-Energy engineering
-Environmental applications of heat and/or mass transfer