TiO2@ZnO/MoSe2三元复合光阳极对提高太阳能电池效率的协同效应

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Alagumalai Manimekalai , Kuppu Sakthi Velu , Sonaimuthu Mohandoss , Seho Sun
{"title":"TiO2@ZnO/MoSe2三元复合光阳极对提高太阳能电池效率的协同效应","authors":"Alagumalai Manimekalai ,&nbsp;Kuppu Sakthi Velu ,&nbsp;Sonaimuthu Mohandoss ,&nbsp;Seho Sun","doi":"10.1016/j.jpcs.2025.112786","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the ternary composites of two-dimensional transition-metal dichalcogenides, specifically molybdenum selenide (MoSe<sub>2</sub>) decorated with titanium dioxide and zinc oxide (TiO<sub>2</sub>@ZnO/MoSe<sub>2</sub>), were synthesized using the hydrothermal method. The FE-SEM image of TiO<sub>2</sub>@ZnO/MoSe<sub>2</sub> ternary composite exhibited nanoparticles with an embedded crystalline nature. HR-TEM image revealed a nanoparticle-encased multicrystalline structure. The AFM analysis of the TiO<sub>2</sub>@ZnO/MoSe<sub>2</sub> ternary composite photoanode displayed a highly textured and rough surface. Furthermore, X-ray studies indicated that the as-prepared TiO<sub>2</sub>@ZnO/MoSe<sub>2</sub> ternary composite photoanode contains the anatase phase, with the predominant crystalline orientation being (110). Raman results confirmed the presence TiO<sub>2</sub>, ZnO, and MoSe<sub>2</sub> in the ternary composite. UV–visible spectroscopy revealed absorption peaks at 248 nm, 226 nm, and 630 nm, corresponding to TiO<sub>2</sub>, ZnO, and MoSe<sub>2</sub>, respectively. The TiO<sub>2</sub>@ZnO/MoSe<sub>2</sub> composite photoanode showed an electrical conductivity of 5.63 × 10<sup>−4</sup> S cm<sup>−1</sup> at room temperature. Additionally, dye-sensitized solar cells with the TiO<sub>2</sub>@ZnO/MoSe<sub>2</sub> ternary composite photoanode achieved a notably higher efficiency (9.13 %) than those with TiO<sub>2</sub>@MoSe<sub>2</sub> and ZnO@MoSe<sub>2</sub> photoanodes (7.35 % and 6.27 %, respectively). The proposed ternary composite consistently outperformed previously reported TiO<sub>2</sub>-based photoanodes such as nitrogen-doped TiO<sub>2</sub> nanoparticles/nanotubes, Pt-doped TiO<sub>2</sub> nanotubes on the Ti mesh, and carbon nanotube–doped TiO<sub>2</sub> nanorods (efficiencies of 2.53 %, 5.60 %, and 2.30 %, respectively). After a 30-day stability test, the TiO<sub>2</sub>@ZnO/MoSe<sub>2</sub> ternary composite photoanode showed the efficiency of 8.47 %. This suggests that the TiO<sub>2</sub>@ZnO/MoSe<sub>2</sub> composite is a promising photoanode material for high-performance dye-sensitized solar cells.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"204 ","pages":"Article 112786"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic effects in the TiO2@ZnO/MoSe2 ternary composite photoanode for enhanced solar cell efficiency\",\"authors\":\"Alagumalai Manimekalai ,&nbsp;Kuppu Sakthi Velu ,&nbsp;Sonaimuthu Mohandoss ,&nbsp;Seho Sun\",\"doi\":\"10.1016/j.jpcs.2025.112786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, the ternary composites of two-dimensional transition-metal dichalcogenides, specifically molybdenum selenide (MoSe<sub>2</sub>) decorated with titanium dioxide and zinc oxide (TiO<sub>2</sub>@ZnO/MoSe<sub>2</sub>), were synthesized using the hydrothermal method. The FE-SEM image of TiO<sub>2</sub>@ZnO/MoSe<sub>2</sub> ternary composite exhibited nanoparticles with an embedded crystalline nature. HR-TEM image revealed a nanoparticle-encased multicrystalline structure. The AFM analysis of the TiO<sub>2</sub>@ZnO/MoSe<sub>2</sub> ternary composite photoanode displayed a highly textured and rough surface. Furthermore, X-ray studies indicated that the as-prepared TiO<sub>2</sub>@ZnO/MoSe<sub>2</sub> ternary composite photoanode contains the anatase phase, with the predominant crystalline orientation being (110). Raman results confirmed the presence TiO<sub>2</sub>, ZnO, and MoSe<sub>2</sub> in the ternary composite. UV–visible spectroscopy revealed absorption peaks at 248 nm, 226 nm, and 630 nm, corresponding to TiO<sub>2</sub>, ZnO, and MoSe<sub>2</sub>, respectively. The TiO<sub>2</sub>@ZnO/MoSe<sub>2</sub> composite photoanode showed an electrical conductivity of 5.63 × 10<sup>−4</sup> S cm<sup>−1</sup> at room temperature. Additionally, dye-sensitized solar cells with the TiO<sub>2</sub>@ZnO/MoSe<sub>2</sub> ternary composite photoanode achieved a notably higher efficiency (9.13 %) than those with TiO<sub>2</sub>@MoSe<sub>2</sub> and ZnO@MoSe<sub>2</sub> photoanodes (7.35 % and 6.27 %, respectively). The proposed ternary composite consistently outperformed previously reported TiO<sub>2</sub>-based photoanodes such as nitrogen-doped TiO<sub>2</sub> nanoparticles/nanotubes, Pt-doped TiO<sub>2</sub> nanotubes on the Ti mesh, and carbon nanotube–doped TiO<sub>2</sub> nanorods (efficiencies of 2.53 %, 5.60 %, and 2.30 %, respectively). After a 30-day stability test, the TiO<sub>2</sub>@ZnO/MoSe<sub>2</sub> ternary composite photoanode showed the efficiency of 8.47 %. This suggests that the TiO<sub>2</sub>@ZnO/MoSe<sub>2</sub> composite is a promising photoanode material for high-performance dye-sensitized solar cells.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"204 \",\"pages\":\"Article 112786\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725002380\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725002380","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用水热法合成了二维过渡金属二卤化物的三元复合材料,特别是二氧化钛和氧化锌装饰的硒化钼 (MoSe2)(TiO2@ZnO/MoSe2)。TiO2@ZnO/MoSe2 三元复合材料的 FE-SEM 图像显示出具有嵌入结晶性质的纳米颗粒。HR-TEM 图像显示了纳米颗粒包覆的多晶结构。对 TiO2@ZnO/MoSe2 三元复合光阳极进行的原子力显微镜分析表明,其表面具有高度纹理和粗糙度。此外,X 射线研究表明,制备的 TiO2@ZnO/MoSe2 三元复合光阳极含有锐钛矿相,主要结晶取向为 (110)。拉曼结果证实了三元复合材料中含有 TiO2、ZnO 和 MoSe2。紫外可见光谱显示在 248 nm、226 nm 和 630 nm 处有吸收峰,分别对应于 TiO2、ZnO 和 MoSe2。TiO2@ZnO/MoSe2 复合光阳极在室温下的导电率为 5.63 × 10-4 S cm-1。此外,采用 TiO2@ZnO/MoSe2 三元复合光阳极的染料敏化太阳能电池的效率(9.13%)明显高于采用 TiO2@MoSe2 和 ZnO@MoSe2 光阳极的电池(分别为 7.35% 和 6.27%)。所提出的三元复合材料的性能始终优于之前报道的基于二氧化钛的光阳极,如掺氮的二氧化钛纳米颗粒/纳米管、掺铂的钛网状二氧化钛纳米管和掺碳纳米管的二氧化钛纳米棒(效率分别为 2.53 %、5.60 % 和 2.30 %)。经过 30 天的稳定性测试,TiO2@ZnO/MoSe2 三元复合光阳极的效率为 8.47%。这表明,TiO2@ZnO/MoSe2 复合材料有望成为高性能染料敏化太阳能电池的光阳极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic effects in the TiO2@ZnO/MoSe2 ternary composite photoanode for enhanced solar cell efficiency
In this study, the ternary composites of two-dimensional transition-metal dichalcogenides, specifically molybdenum selenide (MoSe2) decorated with titanium dioxide and zinc oxide (TiO2@ZnO/MoSe2), were synthesized using the hydrothermal method. The FE-SEM image of TiO2@ZnO/MoSe2 ternary composite exhibited nanoparticles with an embedded crystalline nature. HR-TEM image revealed a nanoparticle-encased multicrystalline structure. The AFM analysis of the TiO2@ZnO/MoSe2 ternary composite photoanode displayed a highly textured and rough surface. Furthermore, X-ray studies indicated that the as-prepared TiO2@ZnO/MoSe2 ternary composite photoanode contains the anatase phase, with the predominant crystalline orientation being (110). Raman results confirmed the presence TiO2, ZnO, and MoSe2 in the ternary composite. UV–visible spectroscopy revealed absorption peaks at 248 nm, 226 nm, and 630 nm, corresponding to TiO2, ZnO, and MoSe2, respectively. The TiO2@ZnO/MoSe2 composite photoanode showed an electrical conductivity of 5.63 × 10−4 S cm−1 at room temperature. Additionally, dye-sensitized solar cells with the TiO2@ZnO/MoSe2 ternary composite photoanode achieved a notably higher efficiency (9.13 %) than those with TiO2@MoSe2 and ZnO@MoSe2 photoanodes (7.35 % and 6.27 %, respectively). The proposed ternary composite consistently outperformed previously reported TiO2-based photoanodes such as nitrogen-doped TiO2 nanoparticles/nanotubes, Pt-doped TiO2 nanotubes on the Ti mesh, and carbon nanotube–doped TiO2 nanorods (efficiencies of 2.53 %, 5.60 %, and 2.30 %, respectively). After a 30-day stability test, the TiO2@ZnO/MoSe2 ternary composite photoanode showed the efficiency of 8.47 %. This suggests that the TiO2@ZnO/MoSe2 composite is a promising photoanode material for high-performance dye-sensitized solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信