{"title":"煤基与石墨基还原氧化石墨烯材料的比较特性","authors":"Sohan Bir Singh, Seyed A. Dastgheib","doi":"10.1016/j.cartre.2025.100511","DOIUrl":null,"url":null,"abstract":"<div><div>A pristine graphite-based graphene oxide (GO) sample and GO-like samples prepared from anthracite, bituminous, and subbituminous coals were subjected to thermal reduction in a wide temperature range of 170–2800 °C to perform a comparative investigation on the physicochemical characteristics of coal-based and graphite-based reduced graphene oxide (RGO) materials. X-ray photoelectron spectroscopy showed the surface composition of both graphite-based and coal-based RGO samples became more similar at 1000–2800 °C, in which the samples prepared at 1500 °C or above had >97 % carbon. Graphite-based and coal-based RGO samples exhibited increasing trends in the percentages of <em>C<img>C</em> (for carbon-carbon groups) and C<img>O (for carbon-oxygen groups) when prepared at higher temperatures. The Fourier transform infrared profiles showed a declining trend in the surface oxygen functionalities for the samples prepared from 170 °C to 600 °C, and no oxygen groups at 1000 °C. Raman spectra showed similar D and G bands for all samples below 1000 °C, but more distinctive 2D bands were observed above 2000 °C, which were sharper for the graphite- and anthracite-based samples. Surface area of all RGO samples were maximized at 1000 °C, then the porosity collapsed by two orders of magnitude at higher temperatures. The X-ray diffraction profiles showed sharper graphitic peaks for the samples prepared at higher temperatures, in which anthracite- and graphite-based samples prepared at 2400–2800 °C had characteristics similar to those of the synthetic graphite. Scanning electron microscopy of different coal-based RGO samples showed similar structures for anthracite-based and graphite-based samples.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100511"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative characteristics of coal-based and graphite-based reduced graphene oxide materials\",\"authors\":\"Sohan Bir Singh, Seyed A. Dastgheib\",\"doi\":\"10.1016/j.cartre.2025.100511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A pristine graphite-based graphene oxide (GO) sample and GO-like samples prepared from anthracite, bituminous, and subbituminous coals were subjected to thermal reduction in a wide temperature range of 170–2800 °C to perform a comparative investigation on the physicochemical characteristics of coal-based and graphite-based reduced graphene oxide (RGO) materials. X-ray photoelectron spectroscopy showed the surface composition of both graphite-based and coal-based RGO samples became more similar at 1000–2800 °C, in which the samples prepared at 1500 °C or above had >97 % carbon. Graphite-based and coal-based RGO samples exhibited increasing trends in the percentages of <em>C<img>C</em> (for carbon-carbon groups) and C<img>O (for carbon-oxygen groups) when prepared at higher temperatures. The Fourier transform infrared profiles showed a declining trend in the surface oxygen functionalities for the samples prepared from 170 °C to 600 °C, and no oxygen groups at 1000 °C. Raman spectra showed similar D and G bands for all samples below 1000 °C, but more distinctive 2D bands were observed above 2000 °C, which were sharper for the graphite- and anthracite-based samples. Surface area of all RGO samples were maximized at 1000 °C, then the porosity collapsed by two orders of magnitude at higher temperatures. The X-ray diffraction profiles showed sharper graphitic peaks for the samples prepared at higher temperatures, in which anthracite- and graphite-based samples prepared at 2400–2800 °C had characteristics similar to those of the synthetic graphite. Scanning electron microscopy of different coal-based RGO samples showed similar structures for anthracite-based and graphite-based samples.</div></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"20 \",\"pages\":\"Article 100511\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056925000616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparative characteristics of coal-based and graphite-based reduced graphene oxide materials
A pristine graphite-based graphene oxide (GO) sample and GO-like samples prepared from anthracite, bituminous, and subbituminous coals were subjected to thermal reduction in a wide temperature range of 170–2800 °C to perform a comparative investigation on the physicochemical characteristics of coal-based and graphite-based reduced graphene oxide (RGO) materials. X-ray photoelectron spectroscopy showed the surface composition of both graphite-based and coal-based RGO samples became more similar at 1000–2800 °C, in which the samples prepared at 1500 °C or above had >97 % carbon. Graphite-based and coal-based RGO samples exhibited increasing trends in the percentages of CC (for carbon-carbon groups) and CO (for carbon-oxygen groups) when prepared at higher temperatures. The Fourier transform infrared profiles showed a declining trend in the surface oxygen functionalities for the samples prepared from 170 °C to 600 °C, and no oxygen groups at 1000 °C. Raman spectra showed similar D and G bands for all samples below 1000 °C, but more distinctive 2D bands were observed above 2000 °C, which were sharper for the graphite- and anthracite-based samples. Surface area of all RGO samples were maximized at 1000 °C, then the porosity collapsed by two orders of magnitude at higher temperatures. The X-ray diffraction profiles showed sharper graphitic peaks for the samples prepared at higher temperatures, in which anthracite- and graphite-based samples prepared at 2400–2800 °C had characteristics similar to those of the synthetic graphite. Scanning electron microscopy of different coal-based RGO samples showed similar structures for anthracite-based and graphite-based samples.