Qixiu Cheng , Qiyuan Song , Zelin Wang , Yuqian Lin , Zhiyuan Liu
{"title":"捕获交通状态变化过程:一种分析建模方法","authors":"Qixiu Cheng , Qiyuan Song , Zelin Wang , Yuqian Lin , Zhiyuan Liu","doi":"10.1016/j.tre.2025.104119","DOIUrl":null,"url":null,"abstract":"<div><div>Precise and dependable identification of traffic states is crucial for optimizing traffic system, which forms the foundation for mitigating congestion and enhancing the overall efficiency and stability of traffic operations. Existing research has mainly adopted methods such as signal processing methods and traffic fundamental diagrams, but each has its own shortcomings. Therefore, this study introduces a Bayesian online changepoint detection method, which can dynamically detect changepoints in traffic flow observation sequences to explain the progression of traffic state variation including traffic flow breakdown. This method is more flexible and adaptable compared to traditional methods. We use this method for empirical analysis. Moreover, this study proposes an adaptive multi-state traffic fundamental diagram model to identify changes in traffic states based on a modified s-shaped three-parameter (S3) fundamental diagram. Our proposed traffic state identification approach is highly interpretable, and can be used to capture traffic state features consisted of at most five different states with four density reference values. We use the method for theoretical analysis. Furthermore, this study applies the above two methods to a high-resolution vehicle trajectory dataset, achieving a comprehensive analysis of the process of variations in traffic state. The findings indicate a strong alignment in the traffic states detected by both techniques, thereby validating the enhanced efficacy of our methodologies for the recognition and analysis of traffic flow dynamics. By comparing the findings of field data analysis and theoretical analysis, a deeper understanding of the traffic state dynamics is achieved, which encompasses the transition from a free-flow condition to a congested one, along with the features of various traffic states such as the stable, metastable, and unstable phases.</div></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"198 ","pages":"Article 104119"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capturing traffic state variation process: An analytical modeling approach\",\"authors\":\"Qixiu Cheng , Qiyuan Song , Zelin Wang , Yuqian Lin , Zhiyuan Liu\",\"doi\":\"10.1016/j.tre.2025.104119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Precise and dependable identification of traffic states is crucial for optimizing traffic system, which forms the foundation for mitigating congestion and enhancing the overall efficiency and stability of traffic operations. Existing research has mainly adopted methods such as signal processing methods and traffic fundamental diagrams, but each has its own shortcomings. Therefore, this study introduces a Bayesian online changepoint detection method, which can dynamically detect changepoints in traffic flow observation sequences to explain the progression of traffic state variation including traffic flow breakdown. This method is more flexible and adaptable compared to traditional methods. We use this method for empirical analysis. Moreover, this study proposes an adaptive multi-state traffic fundamental diagram model to identify changes in traffic states based on a modified s-shaped three-parameter (S3) fundamental diagram. Our proposed traffic state identification approach is highly interpretable, and can be used to capture traffic state features consisted of at most five different states with four density reference values. We use the method for theoretical analysis. Furthermore, this study applies the above two methods to a high-resolution vehicle trajectory dataset, achieving a comprehensive analysis of the process of variations in traffic state. The findings indicate a strong alignment in the traffic states detected by both techniques, thereby validating the enhanced efficacy of our methodologies for the recognition and analysis of traffic flow dynamics. By comparing the findings of field data analysis and theoretical analysis, a deeper understanding of the traffic state dynamics is achieved, which encompasses the transition from a free-flow condition to a congested one, along with the features of various traffic states such as the stable, metastable, and unstable phases.</div></div>\",\"PeriodicalId\":49418,\"journal\":{\"name\":\"Transportation Research Part E-Logistics and Transportation Review\",\"volume\":\"198 \",\"pages\":\"Article 104119\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part E-Logistics and Transportation Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1366554525001607\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554525001607","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Capturing traffic state variation process: An analytical modeling approach
Precise and dependable identification of traffic states is crucial for optimizing traffic system, which forms the foundation for mitigating congestion and enhancing the overall efficiency and stability of traffic operations. Existing research has mainly adopted methods such as signal processing methods and traffic fundamental diagrams, but each has its own shortcomings. Therefore, this study introduces a Bayesian online changepoint detection method, which can dynamically detect changepoints in traffic flow observation sequences to explain the progression of traffic state variation including traffic flow breakdown. This method is more flexible and adaptable compared to traditional methods. We use this method for empirical analysis. Moreover, this study proposes an adaptive multi-state traffic fundamental diagram model to identify changes in traffic states based on a modified s-shaped three-parameter (S3) fundamental diagram. Our proposed traffic state identification approach is highly interpretable, and can be used to capture traffic state features consisted of at most five different states with four density reference values. We use the method for theoretical analysis. Furthermore, this study applies the above two methods to a high-resolution vehicle trajectory dataset, achieving a comprehensive analysis of the process of variations in traffic state. The findings indicate a strong alignment in the traffic states detected by both techniques, thereby validating the enhanced efficacy of our methodologies for the recognition and analysis of traffic flow dynamics. By comparing the findings of field data analysis and theoretical analysis, a deeper understanding of the traffic state dynamics is achieved, which encompasses the transition from a free-flow condition to a congested one, along with the features of various traffic states such as the stable, metastable, and unstable phases.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.