{"title":"网络上的随机SIRS模型:感染的均值和方差","authors":"Tingting Chen , Guirong Liu , Zhen Jin","doi":"10.1016/j.idm.2025.03.008","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the heterogeneity of contact structure, it is more reasonable to model on networks for epidemics. Because of the stochastic nature of events and the discrete number of individuals, the spread of epidemics is more appropriately viewed as a Markov chain. Therefore, we establish stochastic SIRS models with vaccination on networks to study the mean and variance of the number of susceptible and infected individuals for large-scale populations. Using van Kampen's system-size expansion, we derive a high-dimensional deterministic system which describes the mean behaviour and a Fokker-Planck equation which characterizes the variance around deterministic trajectories. Utilizing the qualitative analysis technique and Lyapunov function, we demonstrate that the disease-free equilibrium of the deterministic system is globally asymptotically stable if the basic reproduction number <em>R</em><sub>0</sub> < 1; and the endemic equilibrium is globally asymptotically stable if <em>R</em><sub>0</sub> > 1. Through the analysis of the Fokker-Planck equation, we obtain the asymptotic expression for the variance of the number of susceptible and infected individuals around the endemic equilibrium, which can be approximated by the elements of principal diagonal of the solution of the corresponding Lyapunov equation. Here, the solution of Lyapunov equation is expressed by vectorization operator of matrices and Kronecker product. Finally, numerical simulations illustrate that vaccination can reduce infections and increase fluctuations of the number of infected individuals and show that individuals with greater degree are more easily infected.</div></div>","PeriodicalId":36831,"journal":{"name":"Infectious Disease Modelling","volume":"10 3","pages":"Pages 875-896"},"PeriodicalIF":8.8000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic SIRS models on networks: mean and variance of infection\",\"authors\":\"Tingting Chen , Guirong Liu , Zhen Jin\",\"doi\":\"10.1016/j.idm.2025.03.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to the heterogeneity of contact structure, it is more reasonable to model on networks for epidemics. Because of the stochastic nature of events and the discrete number of individuals, the spread of epidemics is more appropriately viewed as a Markov chain. Therefore, we establish stochastic SIRS models with vaccination on networks to study the mean and variance of the number of susceptible and infected individuals for large-scale populations. Using van Kampen's system-size expansion, we derive a high-dimensional deterministic system which describes the mean behaviour and a Fokker-Planck equation which characterizes the variance around deterministic trajectories. Utilizing the qualitative analysis technique and Lyapunov function, we demonstrate that the disease-free equilibrium of the deterministic system is globally asymptotically stable if the basic reproduction number <em>R</em><sub>0</sub> < 1; and the endemic equilibrium is globally asymptotically stable if <em>R</em><sub>0</sub> > 1. Through the analysis of the Fokker-Planck equation, we obtain the asymptotic expression for the variance of the number of susceptible and infected individuals around the endemic equilibrium, which can be approximated by the elements of principal diagonal of the solution of the corresponding Lyapunov equation. Here, the solution of Lyapunov equation is expressed by vectorization operator of matrices and Kronecker product. Finally, numerical simulations illustrate that vaccination can reduce infections and increase fluctuations of the number of infected individuals and show that individuals with greater degree are more easily infected.</div></div>\",\"PeriodicalId\":36831,\"journal\":{\"name\":\"Infectious Disease Modelling\",\"volume\":\"10 3\",\"pages\":\"Pages 875-896\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infectious Disease Modelling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468042725000259\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Disease Modelling","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468042725000259","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Stochastic SIRS models on networks: mean and variance of infection
Due to the heterogeneity of contact structure, it is more reasonable to model on networks for epidemics. Because of the stochastic nature of events and the discrete number of individuals, the spread of epidemics is more appropriately viewed as a Markov chain. Therefore, we establish stochastic SIRS models with vaccination on networks to study the mean and variance of the number of susceptible and infected individuals for large-scale populations. Using van Kampen's system-size expansion, we derive a high-dimensional deterministic system which describes the mean behaviour and a Fokker-Planck equation which characterizes the variance around deterministic trajectories. Utilizing the qualitative analysis technique and Lyapunov function, we demonstrate that the disease-free equilibrium of the deterministic system is globally asymptotically stable if the basic reproduction number R0 < 1; and the endemic equilibrium is globally asymptotically stable if R0 > 1. Through the analysis of the Fokker-Planck equation, we obtain the asymptotic expression for the variance of the number of susceptible and infected individuals around the endemic equilibrium, which can be approximated by the elements of principal diagonal of the solution of the corresponding Lyapunov equation. Here, the solution of Lyapunov equation is expressed by vectorization operator of matrices and Kronecker product. Finally, numerical simulations illustrate that vaccination can reduce infections and increase fluctuations of the number of infected individuals and show that individuals with greater degree are more easily infected.
期刊介绍:
Infectious Disease Modelling is an open access journal that undergoes peer-review. Its main objective is to facilitate research that combines mathematical modelling, retrieval and analysis of infection disease data, and public health decision support. The journal actively encourages original research that improves this interface, as well as review articles that highlight innovative methodologies relevant to data collection, informatics, and policy making in the field of public health.