具有非瞬时脉冲边界条件的Atangana-Baleanu-Caputo分数阶方程的β-Ulam稳定性结果

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
El-sayed El-hady , K. Venkatachalam , G.S. Murugapandian , Tania A. Lazar , Vasile Lazar , Liliana Guran
{"title":"具有非瞬时脉冲边界条件的Atangana-Baleanu-Caputo分数阶方程的β-Ulam稳定性结果","authors":"El-sayed El-hady ,&nbsp;K. Venkatachalam ,&nbsp;G.S. Murugapandian ,&nbsp;Tania A. Lazar ,&nbsp;Vasile Lazar ,&nbsp;Liliana Guran","doi":"10.1016/j.aej.2025.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous fixed point theorems (FPTs) are crucial for scientific research in the domains of engineering and science. The main goal of this article is to examine the <span><math><mi>β</mi></math></span>-Ulam-Hyers stability for non-instantaneous impulsive fractional integro-differential equations with Atangana–Baleanu–Caputo (<span><math><mi>AB</mi></math></span>-Caputo) fractional derivative in a Banach space. Moreover, Banach Contraction Mapping Principle (BCMP) and Krasnoselskii fixed point theorems (KFPT) are utilized to prove the uniqueness and existence theorems. At the end, an example is discussed to validate the analytical result. Thus, we generalize a number of previous results.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"125 ","pages":"Pages 347-353"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"β-Ulam stability results for Atangana–Baleanu–Caputo fractional equations with non-instantaneous impulsive boundary conditions\",\"authors\":\"El-sayed El-hady ,&nbsp;K. Venkatachalam ,&nbsp;G.S. Murugapandian ,&nbsp;Tania A. Lazar ,&nbsp;Vasile Lazar ,&nbsp;Liliana Guran\",\"doi\":\"10.1016/j.aej.2025.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Numerous fixed point theorems (FPTs) are crucial for scientific research in the domains of engineering and science. The main goal of this article is to examine the <span><math><mi>β</mi></math></span>-Ulam-Hyers stability for non-instantaneous impulsive fractional integro-differential equations with Atangana–Baleanu–Caputo (<span><math><mi>AB</mi></math></span>-Caputo) fractional derivative in a Banach space. Moreover, Banach Contraction Mapping Principle (BCMP) and Krasnoselskii fixed point theorems (KFPT) are utilized to prove the uniqueness and existence theorems. At the end, an example is discussed to validate the analytical result. Thus, we generalize a number of previous results.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"125 \",\"pages\":\"Pages 347-353\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825004636\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825004636","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

许多不动点定理对工程和科学领域的科学研究至关重要。本文主要目的是研究Banach空间中具有Atangana-Baleanu-Caputo (AB-Caputo)分数阶导数的非瞬时脉冲分数阶积分微分方程的β-Ulam-Hyers稳定性。利用Banach收缩映射原理(BCMP)和Krasnoselskii不动点定理(KFPT)证明了唯一性定理和存在性定理。最后,通过算例对分析结果进行了验证。因此,我们推广了以前的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
β-Ulam stability results for Atangana–Baleanu–Caputo fractional equations with non-instantaneous impulsive boundary conditions
Numerous fixed point theorems (FPTs) are crucial for scientific research in the domains of engineering and science. The main goal of this article is to examine the β-Ulam-Hyers stability for non-instantaneous impulsive fractional integro-differential equations with Atangana–Baleanu–Caputo (AB-Caputo) fractional derivative in a Banach space. Moreover, Banach Contraction Mapping Principle (BCMP) and Krasnoselskii fixed point theorems (KFPT) are utilized to prove the uniqueness and existence theorems. At the end, an example is discussed to validate the analytical result. Thus, we generalize a number of previous results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信