{"title":"换向子有有限右恩格尔汇的紧群","authors":"Evgeny Khukhro , Pavel Shumyatsky","doi":"10.1016/j.jpaa.2025.107970","DOIUrl":null,"url":null,"abstract":"<div><div>A right Engel sink of an element <em>g</em> of a group <em>G</em> is a subset containing all sufficiently long commutators <span><math><mo>[</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>[</mo><mo>[</mo><mi>g</mi><mo>,</mo><mi>x</mi><mo>]</mo><mo>,</mo><mi>x</mi><mo>]</mo><mo>,</mo><mo>…</mo><mo>,</mo><mi>x</mi><mo>]</mo></math></span>. We prove that if <em>G</em> is a compact group in which, for some <em>k</em>, every commutator <span><math><mo>[</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>[</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>]</mo></math></span> has a finite right Engel sink, then <em>G</em> has a locally nilpotent open subgroup. If in addition, for some positive integer <em>m</em>, every commutator <span><math><mo>[</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>[</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>]</mo></math></span> has a right Engel sink of cardinality at most <em>m</em>, then <em>G</em> has a locally nilpotent subgroup of finite index bounded in terms of <em>m</em> only.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 107970"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact groups in which commutators have finite right Engel sinks\",\"authors\":\"Evgeny Khukhro , Pavel Shumyatsky\",\"doi\":\"10.1016/j.jpaa.2025.107970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A right Engel sink of an element <em>g</em> of a group <em>G</em> is a subset containing all sufficiently long commutators <span><math><mo>[</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>[</mo><mo>[</mo><mi>g</mi><mo>,</mo><mi>x</mi><mo>]</mo><mo>,</mo><mi>x</mi><mo>]</mo><mo>,</mo><mo>…</mo><mo>,</mo><mi>x</mi><mo>]</mo></math></span>. We prove that if <em>G</em> is a compact group in which, for some <em>k</em>, every commutator <span><math><mo>[</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>[</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>]</mo></math></span> has a finite right Engel sink, then <em>G</em> has a locally nilpotent open subgroup. If in addition, for some positive integer <em>m</em>, every commutator <span><math><mo>[</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>[</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>]</mo></math></span> has a right Engel sink of cardinality at most <em>m</em>, then <em>G</em> has a locally nilpotent subgroup of finite index bounded in terms of <em>m</em> only.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 7\",\"pages\":\"Article 107970\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925001094\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001094","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Compact groups in which commutators have finite right Engel sinks
A right Engel sink of an element g of a group G is a subset containing all sufficiently long commutators . We prove that if G is a compact group in which, for some k, every commutator has a finite right Engel sink, then G has a locally nilpotent open subgroup. If in addition, for some positive integer m, every commutator has a right Engel sink of cardinality at most m, then G has a locally nilpotent subgroup of finite index bounded in terms of m only.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.