覆盖恩里克曲面的理想属和K3曲面

IF 0.7 2区 数学 Q2 MATHEMATICS
Simon Brandhorst , Serkan Sonel , Davide Cesare Veniani
{"title":"覆盖恩里克曲面的理想属和K3曲面","authors":"Simon Brandhorst ,&nbsp;Serkan Sonel ,&nbsp;Davide Cesare Veniani","doi":"10.1016/j.jpaa.2025.107974","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce the notion of idoneal genera, which are a generalization of Euler's idoneal numbers. We prove that there exist only a finite number of idoneal genera, and we provide an algorithm to enumerate all idoneal genera of rank at least 3. As an application, we classify transcendental lattices of K3 surfaces covering an Enriques surface.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107974"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Idoneal genera and K3 surfaces covering an Enriques surface\",\"authors\":\"Simon Brandhorst ,&nbsp;Serkan Sonel ,&nbsp;Davide Cesare Veniani\",\"doi\":\"10.1016/j.jpaa.2025.107974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce the notion of idoneal genera, which are a generalization of Euler's idoneal numbers. We prove that there exist only a finite number of idoneal genera, and we provide an algorithm to enumerate all idoneal genera of rank at least 3. As an application, we classify transcendental lattices of K3 surfaces covering an Enriques surface.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 6\",\"pages\":\"Article 107974\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925001136\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001136","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了理想属的概念,它是欧拉理想数的推广。证明了理想属的个数是有限的,并给出了一种枚举秩至少为3的理想属的算法。作为应用,我们对覆盖在Enriques曲面上的K3曲面的超越格进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Idoneal genera and K3 surfaces covering an Enriques surface
We introduce the notion of idoneal genera, which are a generalization of Euler's idoneal numbers. We prove that there exist only a finite number of idoneal genera, and we provide an algorithm to enumerate all idoneal genera of rank at least 3. As an application, we classify transcendental lattices of K3 surfaces covering an Enriques surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信