Chao Guan , Xinyang Song , Shiyan Zhou , Yifan Jiang , Linjie Qiao , Xiaojun Ma , Ning Chen , Changming Zhao
{"title":"旱地灌丛生态系统生长与非生长季节土壤呼吸对生物结皮的差异响应","authors":"Chao Guan , Xinyang Song , Shiyan Zhou , Yifan Jiang , Linjie Qiao , Xiaojun Ma , Ning Chen , Changming Zhao","doi":"10.1016/j.apsoil.2025.106113","DOIUrl":null,"url":null,"abstract":"<div><div>Biocrusts, which are distinctive elements in arid and semiarid ecosystems, stand out as pivotal regulators of soil respiration. However, the intricate seasonal variability in the response of soil respiration to diverse biocrust types has not been determined. Using three years of continuous field measurements taken at hourly intervals, we explored the seasonal (nongrowing and growing seasons) responses of soil respiration to cyanobacteria-, lichen- and moss-dominated biocrusts in a shrubland on the Loess Plateau in China. Our results revealed that the effects of cyanobacteria-dominated biocrusts on total soil respiration varied between the nongrowing and growing seasons, whereas the effects of moss- and lichen-dominated biocrusts on total soil respiration showed no significant seasonal differences. Notably, the effect of biocrusts on seasonal soil respiration fluctuations was associated with the biocrust type, with biocrust layer respiration increasing mostly in the following order: cyanobacteria < lichen < moss. The magnitude of this effect was influenced not only by the biocrust type but also by the nongrowing and growing seasons. Soil temperature emerged as a primary driver of total soil respiration during the nongrowing season, whereas soil moisture predominated during the growing season. Moreover, annual precipitation dynamics may have shifted the roles of biocrusts and the key determinants of soil respiration. Collectively, our findings emphasize the importance of considering the nongrowing and growing seasons independently, as well as the specific biocrust type, when assessing the responses of soil respiration in arid and semiarid ecosystems.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"211 ","pages":"Article 106113"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divergent responses of soil respiration to biocrusts during the nongrowing and growing seasons in a dryland shrubland ecosystem\",\"authors\":\"Chao Guan , Xinyang Song , Shiyan Zhou , Yifan Jiang , Linjie Qiao , Xiaojun Ma , Ning Chen , Changming Zhao\",\"doi\":\"10.1016/j.apsoil.2025.106113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biocrusts, which are distinctive elements in arid and semiarid ecosystems, stand out as pivotal regulators of soil respiration. However, the intricate seasonal variability in the response of soil respiration to diverse biocrust types has not been determined. Using three years of continuous field measurements taken at hourly intervals, we explored the seasonal (nongrowing and growing seasons) responses of soil respiration to cyanobacteria-, lichen- and moss-dominated biocrusts in a shrubland on the Loess Plateau in China. Our results revealed that the effects of cyanobacteria-dominated biocrusts on total soil respiration varied between the nongrowing and growing seasons, whereas the effects of moss- and lichen-dominated biocrusts on total soil respiration showed no significant seasonal differences. Notably, the effect of biocrusts on seasonal soil respiration fluctuations was associated with the biocrust type, with biocrust layer respiration increasing mostly in the following order: cyanobacteria < lichen < moss. The magnitude of this effect was influenced not only by the biocrust type but also by the nongrowing and growing seasons. Soil temperature emerged as a primary driver of total soil respiration during the nongrowing season, whereas soil moisture predominated during the growing season. Moreover, annual precipitation dynamics may have shifted the roles of biocrusts and the key determinants of soil respiration. Collectively, our findings emphasize the importance of considering the nongrowing and growing seasons independently, as well as the specific biocrust type, when assessing the responses of soil respiration in arid and semiarid ecosystems.</div></div>\",\"PeriodicalId\":8099,\"journal\":{\"name\":\"Applied Soil Ecology\",\"volume\":\"211 \",\"pages\":\"Article 106113\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soil Ecology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0929139325002513\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139325002513","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Divergent responses of soil respiration to biocrusts during the nongrowing and growing seasons in a dryland shrubland ecosystem
Biocrusts, which are distinctive elements in arid and semiarid ecosystems, stand out as pivotal regulators of soil respiration. However, the intricate seasonal variability in the response of soil respiration to diverse biocrust types has not been determined. Using three years of continuous field measurements taken at hourly intervals, we explored the seasonal (nongrowing and growing seasons) responses of soil respiration to cyanobacteria-, lichen- and moss-dominated biocrusts in a shrubland on the Loess Plateau in China. Our results revealed that the effects of cyanobacteria-dominated biocrusts on total soil respiration varied between the nongrowing and growing seasons, whereas the effects of moss- and lichen-dominated biocrusts on total soil respiration showed no significant seasonal differences. Notably, the effect of biocrusts on seasonal soil respiration fluctuations was associated with the biocrust type, with biocrust layer respiration increasing mostly in the following order: cyanobacteria < lichen < moss. The magnitude of this effect was influenced not only by the biocrust type but also by the nongrowing and growing seasons. Soil temperature emerged as a primary driver of total soil respiration during the nongrowing season, whereas soil moisture predominated during the growing season. Moreover, annual precipitation dynamics may have shifted the roles of biocrusts and the key determinants of soil respiration. Collectively, our findings emphasize the importance of considering the nongrowing and growing seasons independently, as well as the specific biocrust type, when assessing the responses of soil respiration in arid and semiarid ecosystems.
期刊介绍:
Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.