通过金属盐辅助化学蚀刻方法实现稳定锂存储的类葡萄Si@Na2SiO3复合材料

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zengmou Li , Xiaoling Liu , Qianwen Wang, Xinyu Jiang, Rui Yan, Keyu Zhang, Yaochun Yao, Shaoze Zhang, Yin Li, Junxian Hu
{"title":"通过金属盐辅助化学蚀刻方法实现稳定锂存储的类葡萄Si@Na2SiO3复合材料","authors":"Zengmou Li ,&nbsp;Xiaoling Liu ,&nbsp;Qianwen Wang,&nbsp;Xinyu Jiang,&nbsp;Rui Yan,&nbsp;Keyu Zhang,&nbsp;Yaochun Yao,&nbsp;Shaoze Zhang,&nbsp;Yin Li,&nbsp;Junxian Hu","doi":"10.1016/j.matlet.2025.138586","DOIUrl":null,"url":null,"abstract":"<div><div>Serious volume expansion for silicon-based material has extremely restricted its widespread application. Herein, Si@Na<sub>2</sub>SiO<sub>3</sub> composite with grape-liked structure was fabricated by a simple metal salt-assisted chemical etching method, which is enabled by the high corrosivity of NaHCO<sub>3</sub>. The gelatinous Na<sub>2</sub>SiO<sub>3</sub> can evenly coat the surface of Si nanoparticles, then efficiently inhibiting volume expansion. Meanwhile, porous structures etched by NaHCO<sub>3</sub> provide more diffusion channels for Li<sup>+</sup>. Si@Na<sub>2</sub>SiO<sub>3</sub> exhibits excellent cycling and rate properties: the discharge capacity of 1140.16mAh g<sup>−1</sup> at 0.5 A g<sup>-1</sup>after 100th cycling and the stable discharge capacity of 1565.64 mAh g<sup>−1</sup> at 2.0 A g<sup>−1</sup>. This research provides a simple and effective technology to exploit the high-capacity silicon-based anode material.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"393 ","pages":"Article 138586"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grape-liked Si@Na2SiO3 composites for stable lithium storage though a metal salt-assisted chemical etching approach\",\"authors\":\"Zengmou Li ,&nbsp;Xiaoling Liu ,&nbsp;Qianwen Wang,&nbsp;Xinyu Jiang,&nbsp;Rui Yan,&nbsp;Keyu Zhang,&nbsp;Yaochun Yao,&nbsp;Shaoze Zhang,&nbsp;Yin Li,&nbsp;Junxian Hu\",\"doi\":\"10.1016/j.matlet.2025.138586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Serious volume expansion for silicon-based material has extremely restricted its widespread application. Herein, Si@Na<sub>2</sub>SiO<sub>3</sub> composite with grape-liked structure was fabricated by a simple metal salt-assisted chemical etching method, which is enabled by the high corrosivity of NaHCO<sub>3</sub>. The gelatinous Na<sub>2</sub>SiO<sub>3</sub> can evenly coat the surface of Si nanoparticles, then efficiently inhibiting volume expansion. Meanwhile, porous structures etched by NaHCO<sub>3</sub> provide more diffusion channels for Li<sup>+</sup>. Si@Na<sub>2</sub>SiO<sub>3</sub> exhibits excellent cycling and rate properties: the discharge capacity of 1140.16mAh g<sup>−1</sup> at 0.5 A g<sup>-1</sup>after 100th cycling and the stable discharge capacity of 1565.64 mAh g<sup>−1</sup> at 2.0 A g<sup>−1</sup>. This research provides a simple and effective technology to exploit the high-capacity silicon-based anode material.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"393 \",\"pages\":\"Article 138586\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X25006159\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25006159","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硅基材料体积膨胀严重,极大地限制了硅基材料的广泛应用。本文利用NaHCO3的高腐蚀性,采用简单的金属盐辅助化学蚀刻方法制备了具有葡萄状结构的Si@Na2SiO3复合材料。凝胶状的Na2SiO3可以均匀地包裹在Si纳米颗粒表面,从而有效地抑制体积膨胀。同时,NaHCO3蚀刻的多孔结构为Li+提供了更多的扩散通道。Si@Na2SiO3具有优异的循环和倍率性能:循环100次后,0.5 A g-1时的放电容量为1140.16mAh g-1, 2.0 A g-1时的稳定放电容量为1565.64 mAh g-1。本研究为开发高容量硅基负极材料提供了一种简单有效的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Grape-liked Si@Na2SiO3 composites for stable lithium storage though a metal salt-assisted chemical etching approach

Grape-liked Si@Na2SiO3 composites for stable lithium storage though a metal salt-assisted chemical etching approach
Serious volume expansion for silicon-based material has extremely restricted its widespread application. Herein, Si@Na2SiO3 composite with grape-liked structure was fabricated by a simple metal salt-assisted chemical etching method, which is enabled by the high corrosivity of NaHCO3. The gelatinous Na2SiO3 can evenly coat the surface of Si nanoparticles, then efficiently inhibiting volume expansion. Meanwhile, porous structures etched by NaHCO3 provide more diffusion channels for Li+. Si@Na2SiO3 exhibits excellent cycling and rate properties: the discharge capacity of 1140.16mAh g−1 at 0.5 A g-1after 100th cycling and the stable discharge capacity of 1565.64 mAh g−1 at 2.0 A g−1. This research provides a simple and effective technology to exploit the high-capacity silicon-based anode material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信