基于单轴试验的各向同性可压缩超弹性本构模型构建

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pengfei Yang , Peidong Lei , Bin Liu , Huajian Gao
{"title":"基于单轴试验的各向同性可压缩超弹性本构模型构建","authors":"Pengfei Yang ,&nbsp;Peidong Lei ,&nbsp;Bin Liu ,&nbsp;Huajian Gao","doi":"10.1016/j.jmps.2025.106150","DOIUrl":null,"url":null,"abstract":"<div><div>Constructing constitutive models for compressible soft materials is essential for accurately describing their highly nonlinear, large deformation mechanical behavior and volumetric deformation. However, most existing constitutive models rely on predefined assumptions about the form of the strain energy function. Constructing compressible hyperelastic constitutive models is particularly challenging because, beyond the uniaxial test, it typically requires additional more sophisticated and more costly experiments, such as biaxial, pure shear, and hydrostatic tests. In this paper, we propose an approach to constructing an isotropic compressible hyperelastic constitutive model without assuming a predefined form of the strain energy function. Instead, we derive the strain energy function directly from experimental data. Our method requires only uniaxial tests, significantly simplifying the experimental requirements and costs. This approach is achieved by utilizing the deviatoric-volumetric decomposition of the strain energy function coupled with an interpolation scheme. To validate our proposed approach, we compare our model against traditional compressible constitutive models and well-known experimental data on incompressible rubbers. Additionally, we perform experiments on compressible rubbers, including foamed silicone and foamed EPDM (ethylene propylene diene monomer), for further validation. It is found that our model perfectly predicts the uniaxial test data and accurately predicts mechanical behavior under various other loading conditions. Finally, we discuss strategies for enhancing model accuracy and its ability to decouple uniaxial behavior from compressibility. This decoupling feature is crucial for accurately capturing the distinct mechanical responses associated with different deformation modes, thereby improving the predictive capability of the constitutive model.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"200 ","pages":"Article 106150"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Isotropic Compressible Hyperelastic Constitutive Models Based Solely on Uniaxial Tests\",\"authors\":\"Pengfei Yang ,&nbsp;Peidong Lei ,&nbsp;Bin Liu ,&nbsp;Huajian Gao\",\"doi\":\"10.1016/j.jmps.2025.106150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Constructing constitutive models for compressible soft materials is essential for accurately describing their highly nonlinear, large deformation mechanical behavior and volumetric deformation. However, most existing constitutive models rely on predefined assumptions about the form of the strain energy function. Constructing compressible hyperelastic constitutive models is particularly challenging because, beyond the uniaxial test, it typically requires additional more sophisticated and more costly experiments, such as biaxial, pure shear, and hydrostatic tests. In this paper, we propose an approach to constructing an isotropic compressible hyperelastic constitutive model without assuming a predefined form of the strain energy function. Instead, we derive the strain energy function directly from experimental data. Our method requires only uniaxial tests, significantly simplifying the experimental requirements and costs. This approach is achieved by utilizing the deviatoric-volumetric decomposition of the strain energy function coupled with an interpolation scheme. To validate our proposed approach, we compare our model against traditional compressible constitutive models and well-known experimental data on incompressible rubbers. Additionally, we perform experiments on compressible rubbers, including foamed silicone and foamed EPDM (ethylene propylene diene monomer), for further validation. It is found that our model perfectly predicts the uniaxial test data and accurately predicts mechanical behavior under various other loading conditions. Finally, we discuss strategies for enhancing model accuracy and its ability to decouple uniaxial behavior from compressibility. This decoupling feature is crucial for accurately capturing the distinct mechanical responses associated with different deformation modes, thereby improving the predictive capability of the constitutive model.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"200 \",\"pages\":\"Article 106150\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509625001267\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625001267","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

建立可压缩软质材料的本构模型是准确描述其高度非线性、大变形力学行为和体积变形的关键。然而,大多数现有的本构模型依赖于关于应变能函数形式的预定义假设。构建可压缩超弹性本构模型尤其具有挑战性,因为除了单轴测试之外,它通常还需要额外的更复杂和更昂贵的实验,如双轴、纯剪切和静水试验。在本文中,我们提出了一种构造各向同性可压缩超弹性本构模型的方法,而不需要假设应变能函数的预定义形式。相反,我们直接从实验数据推导出应变能函数。我们的方法只需要单轴测试,大大简化了实验要求和成本。该方法是利用应变能函数的偏差体积分解与插值方案相结合来实现的。为了验证我们提出的方法,我们将我们的模型与传统的可压缩本构模型和众所周知的不可压缩橡胶的实验数据进行了比较。此外,我们还对可压缩橡胶进行了实验,包括发泡硅胶和发泡EPDM(乙丙二烯单体),以进一步验证。结果表明,该模型能较好地预测单轴试验数据,并能较准确地预测各种载荷条件下的力学行为。最后,我们讨论了提高模型精度及其将单轴行为与可压缩性解耦的能力的策略。这种解耦特性对于准确捕捉与不同变形模式相关的不同力学响应至关重要,从而提高本构模型的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of Isotropic Compressible Hyperelastic Constitutive Models Based Solely on Uniaxial Tests
Constructing constitutive models for compressible soft materials is essential for accurately describing their highly nonlinear, large deformation mechanical behavior and volumetric deformation. However, most existing constitutive models rely on predefined assumptions about the form of the strain energy function. Constructing compressible hyperelastic constitutive models is particularly challenging because, beyond the uniaxial test, it typically requires additional more sophisticated and more costly experiments, such as biaxial, pure shear, and hydrostatic tests. In this paper, we propose an approach to constructing an isotropic compressible hyperelastic constitutive model without assuming a predefined form of the strain energy function. Instead, we derive the strain energy function directly from experimental data. Our method requires only uniaxial tests, significantly simplifying the experimental requirements and costs. This approach is achieved by utilizing the deviatoric-volumetric decomposition of the strain energy function coupled with an interpolation scheme. To validate our proposed approach, we compare our model against traditional compressible constitutive models and well-known experimental data on incompressible rubbers. Additionally, we perform experiments on compressible rubbers, including foamed silicone and foamed EPDM (ethylene propylene diene monomer), for further validation. It is found that our model perfectly predicts the uniaxial test data and accurately predicts mechanical behavior under various other loading conditions. Finally, we discuss strategies for enhancing model accuracy and its ability to decouple uniaxial behavior from compressibility. This decoupling feature is crucial for accurately capturing the distinct mechanical responses associated with different deformation modes, thereby improving the predictive capability of the constitutive model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信