{"title":"本体用于整体建筑性能建模和分析","authors":"Duygu Utkucu, Rafael Sacks","doi":"10.1016/j.autcon.2025.106197","DOIUrl":null,"url":null,"abstract":"<div><div>Building performance modeling and analysis using Building Information Modeling (BIM) platforms remains fragmented, requiring various software applications to address different disciplines. Challenges in data extraction, transfer, and integration arise due to inconsistencies in vendor-specific data schemas and limited interoperability. Moreover, OpenBIM data schemas lack comprehensive object definitions and semantics, compromising data integrity. While ontological frameworks have been proposed to address these issues, a unified ontology that integrates multiple performance disciplines has yet to be developed. This paper designed and developed a holistic building performance ontology (HBPO) focusing on acoustic, lighting, and energy domains as subsets to represent a range of sufficiently different domains. This ontology comprises 28 classes, 26 object properties, and 183 data properties, encapsulating essential information, data requirements, and object relationships within and across these domains. Additionally, a series of proof-of-concept experiments were conducted to test, demonstrate, validate, and evaluate the feasibility and applicability of the HBPO.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"175 ","pages":"Article 106197"},"PeriodicalIF":9.6000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ontology for holistic building performance modeling and analysis\",\"authors\":\"Duygu Utkucu, Rafael Sacks\",\"doi\":\"10.1016/j.autcon.2025.106197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Building performance modeling and analysis using Building Information Modeling (BIM) platforms remains fragmented, requiring various software applications to address different disciplines. Challenges in data extraction, transfer, and integration arise due to inconsistencies in vendor-specific data schemas and limited interoperability. Moreover, OpenBIM data schemas lack comprehensive object definitions and semantics, compromising data integrity. While ontological frameworks have been proposed to address these issues, a unified ontology that integrates multiple performance disciplines has yet to be developed. This paper designed and developed a holistic building performance ontology (HBPO) focusing on acoustic, lighting, and energy domains as subsets to represent a range of sufficiently different domains. This ontology comprises 28 classes, 26 object properties, and 183 data properties, encapsulating essential information, data requirements, and object relationships within and across these domains. Additionally, a series of proof-of-concept experiments were conducted to test, demonstrate, validate, and evaluate the feasibility and applicability of the HBPO.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"175 \",\"pages\":\"Article 106197\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580525002377\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525002377","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Ontology for holistic building performance modeling and analysis
Building performance modeling and analysis using Building Information Modeling (BIM) platforms remains fragmented, requiring various software applications to address different disciplines. Challenges in data extraction, transfer, and integration arise due to inconsistencies in vendor-specific data schemas and limited interoperability. Moreover, OpenBIM data schemas lack comprehensive object definitions and semantics, compromising data integrity. While ontological frameworks have been proposed to address these issues, a unified ontology that integrates multiple performance disciplines has yet to be developed. This paper designed and developed a holistic building performance ontology (HBPO) focusing on acoustic, lighting, and energy domains as subsets to represent a range of sufficiently different domains. This ontology comprises 28 classes, 26 object properties, and 183 data properties, encapsulating essential information, data requirements, and object relationships within and across these domains. Additionally, a series of proof-of-concept experiments were conducted to test, demonstrate, validate, and evaluate the feasibility and applicability of the HBPO.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.