推进氢储存:对潜力、挑战和可持续发展途径的关键见解

IF 6.8 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Nisha T Padmanabhan , Laura Clarizia , Priyanka Ganguly
{"title":"推进氢储存:对潜力、挑战和可持续发展途径的关键见解","authors":"Nisha T Padmanabhan ,&nbsp;Laura Clarizia ,&nbsp;Priyanka Ganguly","doi":"10.1016/j.coche.2025.101135","DOIUrl":null,"url":null,"abstract":"<div><div>Research in green hydrogen production is advancing through photocatalysis and electrocatalysis, but storage remains a challenge. Promising hydrogen carriers, such as methanol, ammonia, formic acid, liquid organic hydrogen carriers, and metal hydrides, face issues like low hydrogen content and high energy demands. This review highlights innovations in hydrogen storage, focusing on carrier synthesis and photocatalytic hydrogen release for sustainable, energy-efficient solutions. Advancing catalysts, reactors, lifecycle assessments, and economic feasibility is crucial. Hybrid approaches and augmented intelligence are essential for developing cost-effective, high-efficiency storage systems, driving progress toward a sustainable hydrogen economy.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101135"},"PeriodicalIF":6.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing hydrogen storage: critical insights to potentials, challenges, and pathways to sustainability\",\"authors\":\"Nisha T Padmanabhan ,&nbsp;Laura Clarizia ,&nbsp;Priyanka Ganguly\",\"doi\":\"10.1016/j.coche.2025.101135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Research in green hydrogen production is advancing through photocatalysis and electrocatalysis, but storage remains a challenge. Promising hydrogen carriers, such as methanol, ammonia, formic acid, liquid organic hydrogen carriers, and metal hydrides, face issues like low hydrogen content and high energy demands. This review highlights innovations in hydrogen storage, focusing on carrier synthesis and photocatalytic hydrogen release for sustainable, energy-efficient solutions. Advancing catalysts, reactors, lifecycle assessments, and economic feasibility is crucial. Hybrid approaches and augmented intelligence are essential for developing cost-effective, high-efficiency storage systems, driving progress toward a sustainable hydrogen economy.</div></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":\"48 \",\"pages\":\"Article 101135\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339825000462\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000462","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过光催化和电催化,绿色制氢的研究正在取得进展,但储存仍然是一个挑战。有前途的氢载体,如甲醇、氨、甲酸、液态有机氢载体和金属氢化物,面临着低氢含量和高能量需求的问题。本文重点介绍了氢存储的创新,重点是载体合成和光催化氢释放,以实现可持续、节能的解决方案。先进的催化剂、反应器、生命周期评估和经济可行性至关重要。混合方法和增强智能对于开发具有成本效益,高效的存储系统,推动可持续氢经济的发展至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing hydrogen storage: critical insights to potentials, challenges, and pathways to sustainability
Research in green hydrogen production is advancing through photocatalysis and electrocatalysis, but storage remains a challenge. Promising hydrogen carriers, such as methanol, ammonia, formic acid, liquid organic hydrogen carriers, and metal hydrides, face issues like low hydrogen content and high energy demands. This review highlights innovations in hydrogen storage, focusing on carrier synthesis and photocatalytic hydrogen release for sustainable, energy-efficient solutions. Advancing catalysts, reactors, lifecycle assessments, and economic feasibility is crucial. Hybrid approaches and augmented intelligence are essential for developing cost-effective, high-efficiency storage systems, driving progress toward a sustainable hydrogen economy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Chemical Engineering
Current Opinion in Chemical Engineering BIOTECHNOLOGY & APPLIED MICROBIOLOGYENGINE-ENGINEERING, CHEMICAL
CiteScore
12.80
自引率
3.00%
发文量
114
期刊介绍: Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published. The goals of each review article in Current Opinion in Chemical Engineering are: 1. To acquaint the reader/researcher with the most important recent papers in the given topic. 2. To provide the reader with the views/opinions of the expert in each topic. The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts. Themed sections: Each review will focus on particular aspects of one of the following themed sections of chemical engineering: 1. Nanotechnology 2. Energy and environmental engineering 3. Biotechnology and bioprocess engineering 4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery) 5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.) 6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials). 7. Process systems engineering 8. Reaction engineering and catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信