气候变化视角下的城市智能能源系统:技术、经济和环境优化分析

IF 5.4 Q2 ENERGY & FUELS
Federico Battini , Andrea Menapace , Giulia Stradiotti , Ariele Zanfei , Francesco F. Nicolosi , Daniele Dalla Torre , Massimiliano Renzi , Giovanni Pernigotto , Francesco Ravazzolo , Maurizio Righetti , Andrea Gasparella , Jakob Zinck Thellufsen , Henrik Lund
{"title":"气候变化视角下的城市智能能源系统:技术、经济和环境优化分析","authors":"Federico Battini ,&nbsp;Andrea Menapace ,&nbsp;Giulia Stradiotti ,&nbsp;Ariele Zanfei ,&nbsp;Francesco F. Nicolosi ,&nbsp;Daniele Dalla Torre ,&nbsp;Massimiliano Renzi ,&nbsp;Giovanni Pernigotto ,&nbsp;Francesco Ravazzolo ,&nbsp;Maurizio Righetti ,&nbsp;Andrea Gasparella ,&nbsp;Jakob Zinck Thellufsen ,&nbsp;Henrik Lund","doi":"10.1016/j.segy.2025.100180","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the growing need for sustainable urban development, energy systems modelling must provide long-term carbon-neutral solutions at the city scale while balancing competing criteria. This work introduces a multi-objective optimization approach addressing technical, economic, and environmental criteria for urban smart energy systems designed to achieve 100% renewable energy integration. The analysis incorporates climate change impacts on both energy demand and production. Two optimization strategies are evaluated using Bozen-Bolzano, Italy, as a case study. Specifically, the energy systems were modelled using EnergyPLAN, integrated with Python for automation. Grid search and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) were adopted as optimization methods to compare the advantages and limitations of two different approaches. The results show that both methods produce similar solutions on the Pareto front, with the grid search slightly outperforming due to the consideration of extreme input ranges. However, NSGA-II generated a significantly larger number of Pareto solutions, demonstrating its effectiveness in exploring the solution space more comprehensively. This study underscores the importance of incorporating climate change into multi-objective optimization for robust decision-making in the design of smart urban energy systems for sustainable development.</div></div>","PeriodicalId":34738,"journal":{"name":"Smart Energy","volume":"18 ","pages":"Article 100180"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban Smart Energy Systems from a Climate Change Perspective: Technical, Economic and Environmental Optimization Analysis\",\"authors\":\"Federico Battini ,&nbsp;Andrea Menapace ,&nbsp;Giulia Stradiotti ,&nbsp;Ariele Zanfei ,&nbsp;Francesco F. Nicolosi ,&nbsp;Daniele Dalla Torre ,&nbsp;Massimiliano Renzi ,&nbsp;Giovanni Pernigotto ,&nbsp;Francesco Ravazzolo ,&nbsp;Maurizio Righetti ,&nbsp;Andrea Gasparella ,&nbsp;Jakob Zinck Thellufsen ,&nbsp;Henrik Lund\",\"doi\":\"10.1016/j.segy.2025.100180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In response to the growing need for sustainable urban development, energy systems modelling must provide long-term carbon-neutral solutions at the city scale while balancing competing criteria. This work introduces a multi-objective optimization approach addressing technical, economic, and environmental criteria for urban smart energy systems designed to achieve 100% renewable energy integration. The analysis incorporates climate change impacts on both energy demand and production. Two optimization strategies are evaluated using Bozen-Bolzano, Italy, as a case study. Specifically, the energy systems were modelled using EnergyPLAN, integrated with Python for automation. Grid search and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) were adopted as optimization methods to compare the advantages and limitations of two different approaches. The results show that both methods produce similar solutions on the Pareto front, with the grid search slightly outperforming due to the consideration of extreme input ranges. However, NSGA-II generated a significantly larger number of Pareto solutions, demonstrating its effectiveness in exploring the solution space more comprehensively. This study underscores the importance of incorporating climate change into multi-objective optimization for robust decision-making in the design of smart urban energy systems for sustainable development.</div></div>\",\"PeriodicalId\":34738,\"journal\":{\"name\":\"Smart Energy\",\"volume\":\"18 \",\"pages\":\"Article 100180\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666955225000085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666955225000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了应对城市可持续发展日益增长的需求,能源系统建模必须在平衡竞争标准的同时,在城市规模上提供长期的碳中和解决方案。这项工作介绍了一种多目标优化方法,解决了城市智能能源系统的技术、经济和环境标准,旨在实现100%的可再生能源整合。该分析纳入了气候变化对能源需求和生产的影响。以意大利Bozen-Bolzano为例,对两种优化策略进行了评价。具体来说,能源系统使用EnergyPLAN进行建模,并与Python集成以实现自动化。采用网格搜索和非支配排序遗传算法- ii (NSGA-II)作为优化方法,比较两种方法的优缺点。结果表明,两种方法在Pareto前沿产生相似的解,由于考虑了极端输入范围,网格搜索的性能略好。然而,NSGA-II生成的Pareto解的数量明显更多,表明其在更全面地探索解空间方面的有效性。该研究强调了将气候变化纳入多目标优化的重要性,以便在可持续发展的智能城市能源系统设计中进行稳健决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Urban Smart Energy Systems from a Climate Change Perspective: Technical, Economic and Environmental Optimization Analysis

Urban Smart Energy Systems from a Climate Change Perspective: Technical, Economic and Environmental Optimization Analysis
In response to the growing need for sustainable urban development, energy systems modelling must provide long-term carbon-neutral solutions at the city scale while balancing competing criteria. This work introduces a multi-objective optimization approach addressing technical, economic, and environmental criteria for urban smart energy systems designed to achieve 100% renewable energy integration. The analysis incorporates climate change impacts on both energy demand and production. Two optimization strategies are evaluated using Bozen-Bolzano, Italy, as a case study. Specifically, the energy systems were modelled using EnergyPLAN, integrated with Python for automation. Grid search and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) were adopted as optimization methods to compare the advantages and limitations of two different approaches. The results show that both methods produce similar solutions on the Pareto front, with the grid search slightly outperforming due to the consideration of extreme input ranges. However, NSGA-II generated a significantly larger number of Pareto solutions, demonstrating its effectiveness in exploring the solution space more comprehensively. This study underscores the importance of incorporating climate change into multi-objective optimization for robust decision-making in the design of smart urban energy systems for sustainable development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Energy
Smart Energy Engineering-Mechanical Engineering
CiteScore
9.20
自引率
0.00%
发文量
29
审稿时长
73 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信